Mechanisms regulating Meningeal Development and Function
调节脑膜发育和功能的机制
基本信息
- 批准号:10763476
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAgeAgingAnatomyAnimal FeedAnimalsBathingBiochemicalBiological AssayBlood VesselsBrainBrain InjuriesBuffersCell Culture TechniquesCellsCellular StructuresCentral Nervous SystemCerebrospinal FluidCirculationComplexConnective TissueDefectDevelopmentDevelopmental BiologyDietDiseaseElectron MicroscopyEmbryoEndotheliumEnvironmentExcisionExperimental ModelsFatty acid glycerol estersFishesFunctional disorderFutureGene ExpressionGenesGeneticHistologyHomeostasisImageImpaired cognitionIn VitroInfectionInjuryKnowledgeLabelLinkLiquid substanceLymphatic SystemMacrophageMaintenanceMechanicsMeningealMeningesMetabolicModelingMolecularMorphologyMutagenesisNerve DegenerationNeurocognitiveNeuronsObesityPathogenicityPathway interactionsPericytesPhasePlayPopulationPositioning AttributeProcessPropertyRecoveryRegulationResearchResolutionRiboTagRoleShockSignal TransductionSiteStructureSystemTissuesTransgenic AnimalsTransgenic OrganismsTransmission Electron MicroscopyVascular PermeabilitiesVascular SystemVascularizationZebrafishage effectcell typeconfocal imagingdesignependyminsextracellulargrasphigh resolution imagingin vivoinsightmutantnovelpathogenpreventprogramsresearch facultyresponsesingle-cell RNA sequencingstroke incidencetenure tracktooltranscriptome sequencinguptakewasting
项目摘要
ABSTRACT/PROJECT SUMMARY
The meninges, a protective layer ensheathing the Central Nervous System (CNS), is a highly vascularized,
complex tissue that serves as the primary site for equilibration of cerebrospinal fluid (CSF). CSF, a
transparent, colorless fluid that recirculates throughout the CNS, supports brain buoyancy, prevents
vascular and neuronal collapse, and provides buffering against mechanical injury. Given the functional
importance of CSF for CNS homeostasis, the clearance of metabolic waste from this fluid compartment is
carried out as a nearly constant process. This waste removal process relies heavily on groups of vascular-
associated, perivascular cells within the meninges that filter the byproducts from the CSF and transport
them into circulation via the lymphatic system for ultimate disposal. Hence, the interaction between
meningeal cells and the vascular system is crucial to safeguard brain homeostasis. Some forms of
neurodegeneration have been linked with a decline in homeostasis and an increase in metabolic waste
accumulation in an age-, diet- or pathogenic infection-dependent manner. Understanding vascular-
associated meningeal cells make-up, developmental origin, genetic regulation and function is an important
long-term undertaking to fully grasp how neurodegeneration occurs in response to these conditions. The
amenability of the zebrafish for live imaging represents a remarkable advantage over other models to study
meningeal development in vivo. In Aim 1, I will use newly developed transgenic lines labeling pan-
meningeal and meningeal perivascular cell populations in vivo to uncover the developmental origin of these
cells using a combination of high resolution confocal imaging for lineage tracing studies, Transmission
Electron Microscopy to characterize their cellular structures, and single cell and “RiboTag” RNA-
sequencing to identify gene programs regulated in meningeal populations. Aim 2 will uncover the functions
that meningeal cells play in supporting CNS homeostasis and maintenance. Analysis will be done utilizing
readily available mutants that present defects in meningeal development. In addition, as an unbiased
approach, I will utilize a forward genetic mutagenesis screen to uncover genes required for proper
meningeal development and function. Lastly, complementary in vivo high resolution confocal imaging and
in vitro cell culture assays will be utilized to uncover biochemical changes in meningeal cells resulting from
age, diet, and infection in both wild type and mutant zebrafish populations (Aim 3). These aims are
designed to expand the current knowledge of meningeal cellular components, genetic signals controlling
their development, and a better understanding of their interaction with the vasculature. This proposal offers
a foundational niche in the vascular developmental biology field through which I can launch a future tenure-
track research faculty position.
摘要/项目总结
脑膜是包裹中枢神经系统(CNS)的保护层,是高度血管化的,
作为脑脊液(CSF)平衡的主要部位的复杂组织。脑脊液a
透明,无色的液体,在整个中枢神经系统循环,支持大脑浮力,防止
血管和神经元塌陷,并提供对机械损伤的缓冲。鉴于功能
CSF对于CNS内稳态的重要性,从该液体室中清除代谢废物是
这是一个几乎恒定的过程。这种废物清除过程严重依赖于血管-
脑膜内的相关血管周围细胞,其过滤来自CSF的副产物并运输
它们通过淋巴系统进入循环,以进行最终处置。因此,
脑膜细胞和血管系统对保护大脑的稳态至关重要。某些形式的
神经变性与体内平衡的下降和代谢废物的增加有关
以年龄、饮食或病原性感染依赖的方式蓄积。了解血管-
相关的脑膜细胞组成,发育起源,遗传调控和功能是一个重要的
这是一项长期的任务,以充分掌握神经退行性变如何在这些条件下发生。的
斑马鱼对活体成像的顺从性代表了比其他模型研究的显著优势
体内脑膜发育。在目标1中,我将使用新开发的标记泛-
脑膜和脑膜血管周围的细胞群体在体内,以揭示这些发育起源
使用高分辨率共聚焦成像的组合进行谱系追踪研究,透射
电子显微镜表征其细胞结构,以及单细胞和“RiboTag”RNA-
测序以鉴定脑膜群体中调控的基因程序。目标2将揭示功能
脑膜细胞在维持中枢神经系统稳态和维持中发挥作用。分析将使用
在脑膜发育中存在缺陷的容易获得的突变体。此外,作为一个公正的
方法,我将利用正向遗传诱变筛选,以揭示适当的基因所需的
脑膜的发育和功能。最后,补充体内高分辨率共焦成像和
体外细胞培养试验将用于揭示脑膜细胞中的生化变化,
野生型和突变型斑马鱼种群的年龄、饮食和感染(目的3)。这些目的是
旨在扩大目前的知识脑膜细胞成分,遗传信号控制
他们的发展,并更好地了解他们与脉管系统的相互作用。该提案提供
血管发育生物学领域的一个基础利基,通过它我可以开始未来的任期-
跟踪研究人员的位置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marina Venero Galanternik其他文献
Marina Venero Galanternik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 24.9万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




