Task Specific Project 2

任务特定项目 2

基本信息

项目摘要

The confocal miniprobe (Cell-viZio-GI¿) used in Specific Aim 2 provides horizontal cross-sectional images up to 100 (im tissue penetration depth. This distance is insufficient to assess for the presence of neoplastic invasion and micrometastases below the muscularis mucosa (Fig 3b), which is needed to accurately stage the progression of cancer. We have achieved vertical cross-sectional images with 500 ^m tissue penetration depth ex vivo using the novel dual axes confocal architecture (Fig 8b). This orientation is preferred :for pathological evaluation because it reveals the natural growth and proliferation of tissue micro-structures. Furthermore, we have developed a 5 mm diameter (endoscope compatible) dual axes prototype that achieves high speed scanning in the horizontal (xy-) plane using a MEMS (micro-electro-mechanical sytems) mirror. In order to achieve vertical cross-sections, we need to develop an axial (z-) scanner that performs with sufficient speed for in vivo imaging. MEMS actuators have been developed previously for a number of applications, including computer hard drives,82'83 aviation fluid control systems,84 and optical fiber manipulators.85 These designs are based on electrostatic, thermal, or electromagnetic principles. Howev.er, each of these approaches have limitation in either the amount of force that can be generated or by the size and power required to move the scanhead over the desired range of motion. Pneumatic actuation offers a reliable, robust approach for axial displacement that provides many of the features needed to meet in the in vivo scanning requirements, including 1) high power/force density, 2) large motion displacement, 3) design flexibility, and 4) variety in choice of driving medium. The actuation speed is inherently less than that for MEMS-based electrostatic, thermal, and electromagnetic approaches, but a recent study has shown that pneumatic (air-driven) actuators can achieve axial motions as large as 300 urn at 5 Hz.86 This bandwidth is sufficient for the dual axes confocal microscope to achieve vertical cross-sectional images of 500 jam penetration depth using 785 nm light.
Specific Aim 2中使用的共焦微型探针(Cell-viZio-GI?)提供了水平横截面图像, 到100 μ m的组织穿透深度。该距离不足以评估肿瘤的存在。 粘膜肌层下的浸润和微转移(图3b),这是准确分期所必需的。 癌症的进展。我们已经实现了500 μ m组织穿透的垂直横截面图像 使用新的双轴共焦结构的离体深度(图8b)。这种取向是首选: 病理学评价,因为它揭示了组织微结构的自然生长和增殖。 此外,我们还开发了一个直径为5 mm(内窥镜兼容)的双轴原型, 使用MEMS(微机电系统)镜在水平(xy-)平面中高速扫描。在 为了实现垂直截面,我们需要开发一种轴向(z)扫描仪, 用于体内成像的速度。 MEMS致动器先前已经被开发用于许多应用,包括计算机硬件, 驱动器,82'83航空流体控制系统,84和光纤操纵器。 静电、热或电磁原理。然而,这些方法中的每一种都在以下方面具有局限性: 可以产生的力的大小或者移动扫描头所需的大小和功率 所需的运动范围。气动驱动为轴向位移提供了一种可靠、稳健的方法, 提供了满足体内扫描要求所需的许多特征,包括1)高 功率/力密度,2)大运动位移,3)设计灵活性,以及4)驱动选择多样性 介质致动速度固有地小于基于MEMS的静电、热和静电致动器的致动速度。 电磁方法,但最近的研究表明,气动(空气驱动)执行器可以实现 在5 Hz下轴向运动高达300 um。86该带宽对于双轴共焦显微镜是足够的 以使用785 nm光获得500 μ m穿透深度的垂直横截面图像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katsuo Kurabayashi其他文献

Katsuo Kurabayashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katsuo Kurabayashi', 18)}}的其他基金

Acute and Critical Care Engineering (ACCE) Training Program
急危重症护理工程 (ACCE) 培训计划
  • 批准号:
    10628090
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
Nanoplasmonic Spatiotemporal Imaging of Single-Cell Protein Secretion and Intercellular Communication
单细胞蛋白质分泌和细胞间通讯的纳米等离子体时空成像
  • 批准号:
    10723157
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
Targeted Multi-Spectral Dual Axes Confocal Imaging of In Vivo Molecular Expressio
体内分子表达的靶向多光谱双轴共焦成像
  • 批准号:
    8034713
  • 财政年份:
    2010
  • 资助金额:
    $ 8.39万
  • 项目类别:
Targeted Multi-Spectral Dual Axes Confocal Imaging of In Vivo Molecular Expressio
体内分子表达的靶向多光谱双轴共焦成像
  • 批准号:
    7766550
  • 财政年份:
    2010
  • 资助金额:
    $ 8.39万
  • 项目类别:
Targeted Multi-Spectral Dual Axes Confocal Imaging of In Vivo Molecular Expressio
体内分子表达的靶向多光谱双轴共焦成像
  • 批准号:
    8595156
  • 财政年份:
    2010
  • 资助金额:
    $ 8.39万
  • 项目类别:
Targeted Multi-Spectral Dual Axes Confocal Imaging of In Vivo Molecular Expressio
体内分子表达的靶向多光谱双轴共焦成像
  • 批准号:
    8410480
  • 财政年份:
    2010
  • 资助金额:
    $ 8.39万
  • 项目类别:
Targeted Multi-Spectral Dual Axes Confocal Imaging of In Vivo Molecular Expressio
体内分子表达的靶向多光谱双轴共焦成像
  • 批准号:
    8206731
  • 财政年份:
    2010
  • 资助金额:
    $ 8.39万
  • 项目类别:
Task Specific Project 2
任务特定项目 2
  • 批准号:
    7728715
  • 财政年份:
    2008
  • 资助金额:
    $ 8.39万
  • 项目类别:
Task Specific Project 2
任务特定项目 2
  • 批准号:
    8132368
  • 财政年份:
  • 资助金额:
    $ 8.39万
  • 项目类别:
Task Specific Project 2
任务特定项目 2
  • 批准号:
    8324703
  • 财政年份:
  • 资助金额:
    $ 8.39万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
  • 批准号:
    2409279
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
  • 批准号:
    BB/X014657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
  • 批准号:
    EP/Y028120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了