Identification of blood biomarkers predictive of organ aging
鉴定预测器官衰老的血液生物标志物
基本信息
- 批准号:10777065
- 负责人:
- 金额:$ 38.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2024-09-19
- 项目状态:已结题
- 来源:
- 关键词:AccelerationActivities of Daily LivingAdoptionAgeAgingBehavioralBiocompatible MaterialsBiologicalBiological ClocksBiological MarkersBiopsyBloodBlood specimenCardiovascular DiseasesChronicClinicClinicalClinical DataClinical TrialsCohort StudiesComplexCost SavingsCoupledCuesDataData SetDatabasesDeteriorationDevelopmentDiagnostic testsDietDiseaseEarly DiagnosisEnvironmentExerciseFramingham Heart StudyFunctional disorderFundingFutureGene ExpressionGene Expression ProfileGeneral PopulationGenerationsGenesGeneticGenotypeGoalsHealthHealth PersonnelHealth PromotionHealthcare SystemsImmune systemIncidenceIndividualInflammagingInflammationInflammatoryInterventionLibrariesLife StyleLongevityMalignant NeoplasmsMeasuresModelingMolecularNetwork-basedNeurodegenerative DisordersNutritionalOrganOutcomePathologic ProcessesPatientsPharmaceutical PreparationsPhysiologicalPredictive ValueProceduresProcessProteomicsPublic DomainsPublic HealthRapid diagnosticsResearchResidual stateSeriesSmokingSmoking StatusTechniquesTechnologyTestingTimeTissue BanksTissue SampleTissue-Specific Gene ExpressionTissuesTranslatingUnited States National Institutes of Healthage relatedcandidate identificationclinically relevantcohortcomputer frameworkdiagnostic tooldisorder riskdrug repurposingeffectiveness evaluationefficacy evaluationepigenomicsexperiencehuman datahuman subjectimprovedinsightinterestlifestyle factorsmachine learning methodmachine learning predictionnew technologynon-geneticpharmacologicpredictive markerpreventpreventive interventionrepositorytechnology platformtherapy developmenttooltranscriptomics
项目摘要
Project Summary
As we age, our tissues and organs experience molecular and physiological damage that prevents them from
functioning properly and this ultimately leads to disease states. These changes are not only due to the aging
process itself but are largely influenced by the exposome which includes all non-genetic exposures
(environmental and behavioral). Depending on the complex interaction between the exposome of an individual
and their genetics, different organs deteriorate over time at a different pace, resulting in tissues with different
biological ages within the same individual. As the biological age of a given organ reflects its overall health and
functional capacity, biologically older organs are more likely to cause health problems increasing the risk of
diseases. Aging “clocks” powered by omics technologies (transcriptomics, proteomics, epigenomics, etc.) and
machine learning methods have been used to approximate the biological age of specific tissues. However,
tissue-specific clocks require omics data from a biopsy, making clinical adoption impractical. Therefore, there is
a critical need to develop simple diagnostic tools using readily accessible biological material to measure organ-
specific aging rates in an individual which can be translated into personalized actionabilities and enable accurate
evaluation of the efficacy of health-promoting interventions. Using blood, the pipeline of the immune system,
from aging cohorts we and others have demonstrated that accelerated aging, as evidenced by age-related
chronic inflammation (inflammaging) and dysfunctional immune systems, results in organ dysfunction and an
elevated risk of disease in older subjects. This is not surprising since inflammaging has been proposed to be a
common denominator of most, if not all, diseases of aging. In this proposal, we hypothesize that the biological
information to investigate the aging rates of a given organ is contained in the blood of the same individual and
thus, can be estimated using a collection of tissue-specific gene expression signatures matched with those from
blood samples. Here, we will assemble multiple public domain datasets within and outside of the NIH Common
Fund to create blood-based organ-specific clocks and enable rapid diagnostics of aging rates for a given organ
in an individual. To do so, we will use transcriptomic data across multiple tissues and matched blood from the
Genotype-Tissue Expression (GTEx) database to construct a computational framework that calculates the rate
of aging of 45 tissues in an individual using blood gene expression. We will validate the resulting models to
predict organ-specific aging in disease states specific to the organ of interest, and we will assess the influence
of lifestyle factors including diet, exercise and smoking on the aging of different organs using data from the
Framingham Heart Study. Finally, we will use the Library of Integrated Network-based Cellular Signatures
(LINCS) to identify candidate compounds that can restore the gene expression changes in the blood associated
with tissue aging to optimal levels.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Furman其他文献
David Furman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Furman', 18)}}的其他基金
Leveraging Multi-Scale Deep Phenotyping and Applied Machine Learning to Predict Senescent Cell Burden in Humans
利用多尺度深度表型分析和应用机器学习来预测人类衰老细胞负担
- 批准号:
10684954 - 财政年份:2021
- 资助金额:
$ 38.8万 - 项目类别:
Leveraging Multi-Scale Deep Phenotyping and Applied Machine Learning to Predict Senescent Cell Burden in Humans
利用多尺度深度表型分析和应用机器学习来预测人类衰老细胞负担
- 批准号:
10376498 - 财政年份:2021
- 资助金额:
$ 38.8万 - 项目类别:
相似海外基金
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 38.8万 - 项目类别:
Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
- 批准号:
23K10540 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
- 批准号:
23K16596 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
- 批准号:
2245652 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Standard Grant
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
- 批准号:
23K16412 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
- 批准号:
499112 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Operating Grants
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10429480 - 财政年份:2022
- 资助金额:
$ 38.8万 - 项目类别:
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
- 批准号:
22K17540 - 财政年份:2022
- 资助金额:
$ 38.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
- 批准号:
10668160 - 财政年份:2022
- 资助金额:
$ 38.8万 - 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10621820 - 财政年份:2022
- 资助金额:
$ 38.8万 - 项目类别: