A visible machine learning system to discover targeted treatment solutions in cancer
可见的机器学习系统,用于发现癌症的靶向治疗解决方案
基本信息
- 批准号:10784808
- 负责人:
- 金额:$ 9.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinity ChromatographyArchitectureAwardAwarenessBinding ProteinsBiologicalCRISPR screenCancer BiologyCancer PatientCancer cell lineCellsCellular StructuresComplexCritical PathwaysDataDefectEducational process of instructingEnsureFutureGenerationsGenesGeneticGenetic EngineeringGenetic Predisposition to DiseaseGenome engineeringGenomicsGenotypeImageImmunofluorescence ImmunologicIndividualInterdisciplinary StudyInvestigationKnock-outLeadLearningMachine LearningMalignant NeoplasmsMapsMass Spectrum AnalysisMentorsMethodsModalityMutationNatureOralPathway interactionsPhasePhenotypePostdoctoral FellowProteinsProteomeResearchResearch PersonnelResearch Project GrantsResolutionResourcesSystemTherapeuticTrainingWritingcancer cellcancer genomecombinatorialdata integrationdeep neural networkdesignempowermentexperimental studyfitnessgene interactionimprovedinsightknockout genelarge scale dataloss of function mutationmachine learning frameworkmetabolomenanometerneural networkneural network architecturepreservationskill acquisitionskillssynergismsynthetic lethal interactiontargeted treatmenttherapeutically effectivetherapy designtranscriptometumor
项目摘要
Project Summary/Abstract
Understanding of genetic interactions can lead to therapeutic design for individual cancer patients by targeting
the specific genetic vulnerability in the cancer genome. For example, by identifying gene pairs that pose severe
fitness defects when knocked out simultaneously (compared to separate knockouts), one can selectively kill
cancer cells that harbor loss-of-function mutation in one protein by inhibiting its synthetic-lethal partner. Despite
generation of large-scale data delineating the tumor transcriptome, proteome, metabolome, imaging, and so on,
little is known regarding how different genes interact with each other and it is unclear how one can design
targeted treatments based on the ‘omics data available. To address these challenges, the proposed research
will develop a “visible” machine learning framework to systematically understand the higher-order genetic
interactions (i.e. di-genic and tri-genic interactions) in cancer and design targeted treatments.
The first step for the proposed framework is to gain a holistic view of cancer pathways through combining
the ‘omics data available. Multiple approaches have been applied to integrate data of similar forms, but there yet
lacks an effective solution for integrating data of vastly different qualities and formats. To address this challenge,
Yue Qin has developed a method to infer a hierarchical cancer cell map capturing cancer pathways at multi-
scale resolution by fusing immunofluorescence (IF) imaging data and affinity purification-mass spectrometry (AP-
MS).
During the F99 phase of the proposed research, by tying the architecture of a deep neural network to the
hierarchical cancer cell map, Yue will develop a “visible” neural network (VNN) that can predict the cancer cell
fitness from genetic perturbation (i.e. knockouts) and genomic backgrounds (i.e. mutations) while providing
mechanistic insights in cancer pathways critical for genotype-phenotype prediction.
During the K00 phase of the award, Yue will develop genetic engineering approaches to experimentally
map higher-order genetic interactions in cancer cells based on the mechanistic insights obtained from VNN
during genotype-phenotype prediction. The data generated experimentally can directly inspire targeted treatment
designs. In addition, the new data can be integrated into the hierarchical cancer cell map to improve accuracy
and resolution of the inferred pathways, thus further improving the “visibility” of VNN in genotype-phenotype
prediction.
The combination of a computational focused training during F99 phase and experimental focused training
during K00 phase will fully prepare Yue leading her own interdisciplinary research in cancer biology. In addition,
the personalized training plan covering aspects including mentoring and teaching, scientific writing, and oral
presentation will ensure Yue acquiring skills necessary for her future establishment as an independent
investigator.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yue Qin其他文献
Yue Qin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yue Qin', 18)}}的其他基金
A visible machine learning system to discover targeted treatment solutions in cancer
可见的机器学习系统,用于发现癌症的靶向治疗解决方案
- 批准号:
10305321 - 财政年份:2021
- 资助金额:
$ 9.3万 - 项目类别:
A visible machine learning system to discover targeted treatment solutions in cancer
可见的机器学习系统,用于发现癌症的靶向治疗解决方案
- 批准号:
10475249 - 财政年份:2021
- 资助金额:
$ 9.3万 - 项目类别:
相似海外基金
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10506915 - 财政年份:2021
- 资助金额:
$ 9.3万 - 项目类别:
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10325006 - 财政年份:2021
- 资助金额:
$ 9.3万 - 项目类别:
SBIR Phase I: A New Class of Immobilized Metal Affinity Chromatography Resins
SBIR 第一阶段:一类新型固定金属亲和色谱树脂
- 批准号:
1746198 - 财政年份:2018
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Marine speciation of nickel using immobilized nickel affinity chromatography
使用固定镍亲和色谱法测定镍的海洋形态
- 批准号:
512537-2017 - 财政年份:2017
- 资助金额:
$ 9.3万 - 项目类别:
University Undergraduate Student Research Awards
I-Corps: Commercialization of Immobilized Metal Affinity Chromatography Resins Based on Nanomaterials
I-Corps:基于纳米材料的固定化金属亲和层析树脂的商业化
- 批准号:
1404605 - 财政年份:2014
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Antibody Purification via Affinity Chromatography that Utilizes the Unconventional Nucleotide Binding Site
利用非常规核苷酸结合位点通过亲和色谱法纯化抗体
- 批准号:
1263713 - 财政年份:2013
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Development of multivalent DNA network based affinity chromatography diagnostics for isolating circulating tumour cells
开发基于多价 DNA 网络的亲和色谱诊断法,用于分离循环肿瘤细胞
- 批准号:
425749-2012 - 财政年份:2012
- 资助金额:
$ 9.3万 - 项目类别:
Postgraduate Scholarships - Master's
Next-Generation Affinity Chromatography with PEGylated Ligands
使用聚乙二醇化配体的新一代亲和色谱法
- 批准号:
1159886 - 财政年份:2012
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Immobilized zirconium ion affinity chromatography for specific enrichment of phosphoproteins
用于磷蛋白特异性富集的固定化锆离子亲和层析
- 批准号:
19560760 - 财政年份:2007
- 资助金额:
$ 9.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating drug discovery using frontal affinity chromatography/mass spectrometry
使用正面亲和色谱/质谱加速药物发现
- 批准号:
234753-2000 - 财政年份:2003
- 资助金额:
$ 9.3万 - 项目类别:
Collaborative Research and Development Grants