Evaluation of MRI Biomarkers of Breast Cancer Response

乳腺癌反应的 MRI 生物标志物评估

基本信息

  • 批准号:
    7590293
  • 负责人:
  • 金额:
    $ 31.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-04-01 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Currently, breast tumor response to chemotherapy is monitored by frank changes in tumor morphology as measured by physical exam, mammography and/or ultrasound. Clinical judgments of the effectiveness of treatments are subjective and prone to error. A repeatable, non-invasive imaging method which can reliably assess tumor response would greatly improve clinical breast cancer care. The specialized magnetic resonance imaging (MRI) methods of dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted MRI (DW-MRI) have matured to the point where they offer unique information on tumor status. DCE-MRI reports on relevant physiological parameters including vessel perfusion, vessel wall permeability, extravascular extracellular volume fraction, and (recently) cell size. DW-MRI can provide detailed information on tissue cellularity. We propose to combine a novel analysis of DCE-MRI data with DW-MRI data obtained at 3T to provide functional assessments of the response of breast cancer to treatment. We hypothesize that integrating these quantitative MRI methods will provide accurate and predictive measurements of tumor response after the first cycle of treatment. Furthermore, we will validate the imaging metrics by performing quantitative co- registering the in vivo MR images to histopathological staining of ex vivo mastectomy specimens. To test these hypotheses we will pursue three specific aims: 1. In patients selected by a specific treatment protocol, differentiate responders vs. non-responders by the differences in tumor vessel blood flow and integrity, tissue volume fractions, and tumor cell density. 2. Perform uni- and multi-variate correlation analysis between blood flow, vessel perfusion, extravascular extracellular volume fraction, intracellular water lifetime, and cell density to provide a more complete understanding of the breast tumor environment. 3. Perform quantitative co-registration between in vivo MR images and ex vivo histological specimens to validate the MRI measures. The proposed research will combine several new imaging methods to obtain quantitative information on how breast tumors respond to treatment. We hypothesize that this will let us distinguish responders from non- responders early in the course of treatment so that treatments can be optimized on an individual basis. PUBLIC HEALTH RELEVANCE: The proposed research will combine specialized magnetic resonance imaging (MRI) methods to obtain quantitative information on how human breast tumors respond to treatment. Developing methods of tumor characterization that could be applied early in treatment to assess response would have profound impact on the management of many patients. We hypothesize that the combined analysis of contrast enhanced MRI and diffusion MRI data will provide predictive, non-invasive measurements of tumor response to treatment.
描述(由申请人提供):目前,通过体格检查、乳房X线摄影和/或超声测量肿瘤形态的明显变化来监测乳腺肿瘤对化疗的反应。对治疗效果的临床判断是主观的,容易出错。一种可重复的,非侵入性的成像方法,可以可靠地评估肿瘤的反应将大大改善临床乳腺癌护理。动态对比增强MRI(DCE-MRI)和弥散加权MRI(DW-MRI)的专门磁共振成像(MRI)方法已经成熟到可以提供有关肿瘤状态的独特信息的程度。DCE-MRI报告了相关的生理参数,包括血管灌注、血管壁通透性、血管外细胞外体积分数和(最近)细胞大小。DW-MRI可以提供关于组织细胞结构的详细信息。我们建议结合联合收割机的一种新的分析DCE-MRI数据与DW-MRI数据在3 T获得的乳腺癌治疗反应提供功能评估。我们假设,整合这些定量MRI方法将提供第一个治疗周期后肿瘤反应的准确和预测性测量。此外,我们将通过将体内MR图像与离体乳房切除术标本的组织病理学染色进行定量共配准来验证成像指标。为了验证这些假设,我们将追求三个具体目标:1。在通过特定治疗方案选择的患者中,通过肿瘤血管血流和完整性、组织体积分数和肿瘤细胞密度的差异来区分应答者与非应答者。2.在血流、血管灌注、血管外细胞外容积分数、细胞内水寿命和细胞密度之间进行单变量和多变量相关性分析,以更全面地了解乳腺肿瘤环境。3.在体内MR图像和离体组织学标本之间进行定量配准,以确认MRI测量。拟议中的研究将联合收割机几种新的成像方法,以获得有关乳腺肿瘤如何对治疗作出反应的定量信息。我们假设,这将使我们在治疗过程的早期区分反应者和非反应者,以便在个体基础上优化治疗。 公共卫生关系:拟议中的研究将联合收割机专门的磁共振成像(MRI)方法,以获得人类乳腺肿瘤如何对治疗作出反应的定量信息。开发可以在治疗早期应用以评估反应的肿瘤表征方法将对许多患者的管理产生深远的影响。我们假设对比增强MRI和弥散MRI数据的联合分析将提供肿瘤对治疗反应的预测性、非侵入性测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas E Yankeelov其他文献

Thomas E Yankeelov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas E Yankeelov', 18)}}的其他基金

Integrating Quantitative Imaging and Biophysical Models to Predict Tumor Growth
整合定量成像和生物物理模型来预测肿瘤生长
  • 批准号:
    8509990
  • 财政年份:
    2013
  • 资助金额:
    $ 31.66万
  • 项目类别:
Integrating Quantitative Imaging and Biophysical Models to Predict Tumor Growth
整合定量成像和生物物理模型来预测肿瘤生长
  • 批准号:
    8628808
  • 财政年份:
    2013
  • 资助金额:
    $ 31.66万
  • 项目类别:
Evaluation and Validation of Imaging Biomarkers of Tumor Response to Treatment
肿瘤治疗反应的影像生物标志物的评估和验证
  • 批准号:
    7782841
  • 财政年份:
    2010
  • 资助金额:
    $ 31.66万
  • 项目类别:
Evaluation and Validation of Imaging Biomarkers of Tumor Response to Treatment
肿瘤治疗反应的影像生物标志物的评估和验证
  • 批准号:
    8631054
  • 财政年份:
    2010
  • 资助金额:
    $ 31.66万
  • 项目类别:
Evaluation and Validation of Imaging Biomarkers of Tumor Response to Treatment
肿瘤治疗反应的影像生物标志物的评估和验证
  • 批准号:
    8067924
  • 财政年份:
    2010
  • 资助金额:
    $ 31.66万
  • 项目类别:
Animal and Human Imaging Shared Resource
动物和人类成像共享资源
  • 批准号:
    8180552
  • 财政年份:
    2010
  • 资助金额:
    $ 31.66万
  • 项目类别:
Evaluation and Validation of Imaging Biomarkers of Tumor Response to Treatment
肿瘤治疗反应的影像生物标志物的评估和验证
  • 批准号:
    8212366
  • 财政年份:
    2010
  • 资助金额:
    $ 31.66万
  • 项目类别:
Evaluation and Validation of Imaging Biomarkers of Tumor Response to Treatment
肿瘤治疗反应的影像生物标志物的评估和验证
  • 批准号:
    8444704
  • 财政年份:
    2010
  • 资助金额:
    $ 31.66万
  • 项目类别:
Evaluation of MRI Biomarkers of Breast Cancer Response
乳腺癌反应的 MRI 生物标志物评估
  • 批准号:
    8020100
  • 财政年份:
    2008
  • 资助金额:
    $ 31.66万
  • 项目类别:
Evaluation of MRI Biomarkers of Breast Cancer Response
乳腺癌反应的 MRI 生物标志物评估
  • 批准号:
    7761188
  • 财政年份:
    2008
  • 资助金额:
    $ 31.66万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了