Identification of Biological Materials of Unknown Origin
来源不明的生物材料的鉴定
基本信息
- 批准号:7559531
- 负责人:
- 金额:$ 15.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-02-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAntibiotic ResistanceAreaAutomationAwardBacillus anthracisBacteriaBacterial DNABase SequenceBehaviorBiocompatible MaterialsBioinformaticsBiologicalBiological ModelsBiological ProcessBioterrorismBrucella abortusBurkholderia malleiBurkholderia pseudomalleiCharacteristicsClassificationCluster AnalysisCommitCommunicable DiseasesComputational BiologyCoxiellaDNADNA SequenceDataDetectionDevelopmentDiscriminationDoctor of MedicineDoctor of PhilosophyEscherichia coliFrequenciesFundingGenesGenomeGenomicsGoalsImageIndividualInstitutionInterventionInvestigationKnowledgeLaboratoriesLeadMediatingMedicalMentorsMethodsMicrobiologyModelingNebraskaOligonucleotidesOrganismOutcomePathogenicityPatternPhylogenetic AnalysisPlayPolynucleotidesProceduresPromoter RegionsPublic HealthResearchResearch PersonnelResearch TrainingRoleSalmonella entericaShigella flexneriSiteSpeechStagingStaphylococcus aureusStretchingStructureStudy SectionTechniquesTerrorismTestingTherapeutic InterventionTimeTrainingTraining ActivityTraining ProgramsTreesUnited States National Institutes of HealthUniversitiesWood materialWorkbasebiosecuritycareercostexpectationexperiencehazardinformation organizationinnovationinterestmathematical modelmicrobialorganizational structureprogramstoolvirology
项目摘要
The applicant's long term goal is to understand and elucidate structure and organization within DNA
sequences and uncover their relationship to biological functions. The objective of this application, which is a
step toward the attainment of this long term goal, is to develop techniques for elucidating occult structural
features in bacterial DNA which can be used for identification and differentiation of microbial organisms,
including organisms whose genome has not been completely sequenced, using short fragments of DNA. A
parallel goal is to achieve investigative independence as a computational biologist. The latter goal will be
accomplished through coursework and training in the laboratories of Dr. S. Hinrichs, M.D. The urgent need
for rapid identification tests for biological materials has intensified because of the threat posed by bio-
terrorism. Rapid identification of both the fact and the mode of attack is essential for timely therapeutic
intervention. The ability to identify bacteria based on short sequences of incomplete or possibly corrupt
sequences allows for hazard detection, automation, and low cost distributed sensing capability. The
identification techniques will be developed using three tools; the average mutual information (AMI) profile
which reflects statistical relationships between bases along the DNA sequence, a cluster analysis technique
developed by the applicant and co-workers which identifies genome specific trinucleotide clustering patterns,
and a parsing technique for identification of polynucleotide sequences of interest. Components of the AMI
profile which possess discriminatory capabilities will be identified by decomposing the profile and analyzing
the coefficients using both supervised and unsupervised classification. The clustering strategy will be refined
by correlating parameters in the technique with known biological behavior. Signature trinucleotide and
polynucleotide clustering patterns will be identified for organisms of interest. The different classifications will
be combined into a tree structured test for a model panel of bacteria of medical interest.
申请人的长期目标是理解和阐明 DNA 内的结构和组织
序列并揭示它们与生物功能的关系。该应用程序的目标是
实现这一长期目标的一步是开发阐明神秘结构的技术
细菌DNA的特征可用于微生物的识别和区分,
包括其基因组尚未使用短 DNA 片段进行完全测序的生物体。一个
并行的目标是实现作为计算生物学家的研究独立性。后一个目标将是
通过医学博士 S. Hinrichs 博士实验室的课程和培训完成。
由于生物材料构成的威胁,对生物材料的快速鉴定测试已经加强
恐怖主义。快速识别事实和攻击方式对于及时治疗至关重要
干涉。根据不完整或可能损坏的短序列识别细菌的能力
序列可实现危险检测、自动化和低成本分布式传感功能。这
将使用三种工具开发识别技术;平均互信息 (AMI) 概况
它反映了 DNA 序列上碱基之间的统计关系,这是一种聚类分析技术
由申请人和同事开发,可识别基因组特异性三核苷酸聚类模式,
以及用于识别感兴趣的多核苷酸序列的解析技术。 AMI 的组成部分
通过对档案进行分解和分析,可以识别出具有歧视能力的档案
使用监督和无监督分类的系数。集群策略将细化
通过将技术中的参数与已知的生物行为相关联。特征三核苷酸和
将鉴定感兴趣的生物体的多核苷酸聚类模式。不同的分类会
被组合成具有医学意义的细菌模型组的树结构测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khalid Sayood其他文献
Khalid Sayood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khalid Sayood', 18)}}的其他基金
Identification of Biological Materials of Unknown Origin
来源不明的生物材料的鉴定
- 批准号:
7031388 - 财政年份:2006
- 资助金额:
$ 15.6万 - 项目类别:
Identification of Biological Materials of Unknown Origin
来源不明的生物材料的鉴定
- 批准号:
7168805 - 财政年份:2006
- 资助金额:
$ 15.6万 - 项目类别:
Identification of Biological Materials of Unknown Origin
来源不明的生物材料的鉴定
- 批准号:
7371917 - 财政年份:2006
- 资助金额:
$ 15.6万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
Research Grant














{{item.name}}会员




