Molecular Engineering of Bioactive Hydrogels
生物活性水凝胶的分子工程
基本信息
- 批准号:7595085
- 负责人:
- 金额:$ 17.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAffinityAnimalsBindingBiologicalBiologyBiomedical EngineeringBrainCell CountCell Culture SystemCell Differentiation processCell physiologyCellsClinicalCoculture TechniquesCollectionComplexConditioned Culture MediaCongestive Heart FailureDevelopmentDiabetes MellitusDiseaseEngineeringEngraftmentEnvironmentEpitopesExtracellular MatrixExtracellular Matrix ProteinsGoalsGrantHeartHumanHydrogelsImmuneIn VitroInjuryLigandsLiverMedicineMethodsMolecularMolecular BiologyMusMusclePancreasParkinson DiseasePatientsPeptidesProcessProteinsRegenerative MedicineReproducibilityScienceSerumSignal TransductionSourceStem cellsSurfaceSystemTechnologyTissue EngineeringTissuesTreatment Efficacybasebonecell behaviorcell typehuman embryonic stem cellimmunogenicin vivolarge scale productionleukemianovelpathogenpublic health relevancereconstructionscale upself-renewalstem cell biologystem cell populationsynthetic peptidetherapy designtransmission process
项目摘要
Description (provided by applicant): Human embryonic stem cells (hESCs) have strong potential as sources of cells for the treatment for disease and injury (e.g. tissue engineering and reconstruction, diabetes, Parkinson's Disease, leukemia, congestive heart failure, etc.). The successful integration of hESC into such therapies will hinge upon three critical steps: their expansion without differentiation (i.e., self-renewal), their differentiation into a specific cell type or collection of cell types, and the promotion of their survival and functional integration into existing tissue. However, controlling cell behavior during each of these steps will require precise control over the cellular microenvironment. This poses a major challenge ex vivo in current hESC culture systems, which range from co-culture with feeder cells to serum-free systems where cells are cultured on complex extracellular matrix proteins. All such systems involve animal or human proteins, which pose problems for pathogen transmission, immune rejection, limited reproducibility, and scale up to a clinical process. To achieve the intended goals of regenerative medicine, methods for the precise control of the survival, proliferation, and differentiation of stem cell populations in vitro and in vivo are necessary. Here, we propose to develop a completely synthetic environment to precisely control hESC self-renewal in culture. Specifically, we will engineer a tunable and well-defined environment presenting a completely "synthetic extracellular matrix" (ECM) and chemically-defined media to control the self-renewal/expansion of hESCs. Furthermore, we will
develop high throughput approaches to identify synthetic peptide ligands for functionalization to the synthetic ECM and promotion of hESC self-renewal. If hESCs can be derived and maintained within this fully synthetic microenvironment, then it will be possible to eliminate pathogen transmission associated with mouse or human feeder layers, provide a scalable basis for large-scale production of hESCs, and provide a precise base for further development to control hES cell differentiation. Furthermore, the result will be a technology platform that can be generally applied to numerous stem cell populations and used to investigate the basic biological/developmental mechanisms underlying self-renewal. Public Health Relevance: The development of novel, bioactive materials has significant potential for exerting precise control over cell function, both for fundamental biological studies and applications in tissue engineering and regenerative medicine. For example, developing synthetic, bioactive material systems to promote the self-renewal and expansion of human embryonic stem cells will have numerous biomedical applications including the design of therapies for disease or injury in the muscle, bone, brain, heart, liver, pancreas, and other tissues. The novel blend of stem cell biology, materials science, molecular biology, and bioengineering described in this proposal will be well suited to addressing an important problem, i.e. stem cell control, at the interface of biology, engineering, and medicine
描述(由申请人提供):人胚胎干细胞(hESC)具有作为治疗疾病和损伤(例如组织工程和重建、糖尿病、帕金森病、白血病、充血性心力衰竭等)的细胞来源的强大潜力。成功地将hESC整合到这些疗法中将取决于三个关键步骤:它们的扩增而不分化(即,自我更新),它们分化成特定的细胞类型或细胞类型的集合,以及促进它们的存活和功能整合到现有组织中。然而,在这些步骤中的每一个过程中控制细胞行为将需要对细胞微环境的精确控制。这对目前的hESC培养系统离体提出了重大挑战,所述培养系统的范围从与饲养细胞共培养到无血清系统,其中细胞在复杂的细胞外基质蛋白上培养。所有这些系统都涉及动物或人类蛋白质,这对病原体传播、免疫排斥、有限的再现性和扩大到临床过程造成了问题。为了实现再生医学的预期目标,用于在体外和体内精确控制干细胞群体的存活、增殖和分化的方法是必要的。在这里,我们建议开发一个完全合成的环境,以精确控制培养中的hESC自我更新。具体来说,我们将设计一个可调的和明确的环境,提供一个完全“合成的细胞外基质”(ECM)和化学成分确定的培养基,以控制hESC的自我更新/扩增。此外,我们将
开发高通量方法来鉴定合成肽配体,用于合成ECM的功能化和促进hESC自我更新。如果hESC可以在这种完全合成的微环境中衍生和维持,那么将有可能消除与小鼠或人饲养层相关的病原体传播,为大规模生产hESC提供可扩展的基础,并为进一步开发控制hES细胞分化提供精确的基础。此外,其结果将是一个技术平台,可普遍应用于许多干细胞群体,并用于研究自我更新的基本生物/发育机制。公共卫生相关性:新型生物活性材料的开发具有对细胞功能进行精确控制的巨大潜力,无论是在基础生物学研究还是在组织工程和再生医学中的应用。例如,开发合成的生物活性材料系统以促进人类胚胎干细胞的自我更新和扩增将具有许多生物医学应用,包括设计用于肌肉、骨骼、大脑、心脏、肝脏、胰腺和其他组织中的疾病或损伤的疗法。本提案中所描述的干细胞生物学、材料科学、分子生物学和生物工程学的新融合将非常适合于解决生物学、工程学和医学界面上的一个重要问题,即干细胞控制
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural stem cell adhesion and proliferation on phospholipid bilayers functionalized with RGD peptides.
- DOI:10.1016/j.biomaterials.2010.07.104
- 发表时间:2010-11
- 期刊:
- 影响因子:14
- 作者:Ananthanarayanan, Badriprasad;Little, Lauren;Schaffer, David V.;Healy, Kevin E.;Tirrell, Matthew
- 通讯作者:Tirrell, Matthew
Engineering strategies to emulate the stem cell niche.
- DOI:10.1016/j.tibtech.2009.11.008
- 发表时间:2010-03
- 期刊:
- 影响因子:17.3
- 作者:T. Vazin;D. Schaffer
- 通讯作者:T. Vazin;D. Schaffer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID V SCHAFFER其他文献
DAVID V SCHAFFER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID V SCHAFFER', 18)}}的其他基金
Biology and Biotechnology of Cell and Gene Therapy
细胞和基因治疗生物学和生物技术
- 批准号:
10090424 - 财政年份:2021
- 资助金额:
$ 17.25万 - 项目类别:
In Vivo Directed Evolution of Adeno-Associated Virus Vectors for Glioblastoma Multiforme Tumor-Initiating Cells
多形性胶质母细胞瘤肿瘤起始细胞腺相关病毒载体的体内定向进化
- 批准号:
9353802 - 财政年份:2016
- 资助金额:
$ 17.25万 - 项目类别:
Engineering AAV Vectors to Evade Antibody Neutralization
设计 AAV 载体以逃避抗体中和
- 批准号:
7849654 - 财政年份:2007
- 资助金额:
$ 17.25万 - 项目类别:
Engineering AAV Vectors to Evade Antibody Neutralization
设计 AAV 载体以逃避抗体中和
- 批准号:
7442123 - 财政年份:2007
- 资助金额:
$ 17.25万 - 项目类别:
Engineering AAV Vectors to Evade Antibody Neutralization
设计 AAV 载体以逃避抗体中和
- 批准号:
7208807 - 财政年份:2007
- 资助金额:
$ 17.25万 - 项目类别:
Engineering AAV Vectors to Evade Antibody Neutralization
设计 AAV 载体以逃避抗体中和
- 批准号:
7626787 - 财政年份:2007
- 资助金额:
$ 17.25万 - 项目类别:
Engineering AAV Vectors to Evade Antibody Neutralization
设计 AAV 载体以逃避抗体中和
- 批准号:
7851669 - 财政年份:2007
- 资助金额:
$ 17.25万 - 项目类别:
Engineering Novel AAV Vectors for Retinal Gene Therapy
用于视网膜基因治疗的新型 AAV 载体工程
- 批准号:
7268010 - 财政年份:2006
- 资助金额:
$ 17.25万 - 项目类别:
Engineering Novel AAV Vectors for Retinal Gene Therapy
用于视网膜基因治疗的新型 AAV 载体工程
- 批准号:
7149417 - 财政年份:2006
- 资助金额:
$ 17.25万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
- 批准号:
RGPIN-2018-04753 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




