SINGLE CELL FLUORESCENT PROBES
单细胞荧光探针
基本信息
- 批准号:7598437
- 负责人:
- 金额:$ 2.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:Active Biological TransportBiochemicalCell membraneCellsChariot peptideChemicalsComplexComputer Retrieval of Information on Scientific Projects DatabaseCouplingCytosolDataDegradation PathwayDiffusionDyesElectroporationEncapsulatedEnergy TransferFluorescenceFluorescence Resonance Energy TransferFluorescent ProbesFundingGrantHarvestInstitutionLabelLasersLifeLightLiposomesMethodsMicroinjectionsNatureObject AttachmentPeptidesPhotonsProtein ImportProteinsResearchResearch PersonnelResolutionResourcesSchemeSolutionsSourceSystemTimeUnited States National Institutes of HealthVesicleViral VectorWorkabsorptionbasecytotoxicdesignreceptorsingle molecule
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
It is often desirable to simultaneously observe several fluorescently tagged components in a biochemical mixture, i.e. using multiplexing. The apparatus for this is simplest when all the tags are excited using the same laser source, and this arrangement also has the advantage that data are more easily interpreted because all the labels receive the same input power. Multiplexing with one excitation source is, however, difficult. This is because dyes that emit close to the excitation source tend to absorb the light most efficiently since they have the greatest absorption at that wavelength, while those dyes that emit further into the red have red-shifted absorption spectra and harvest less photons at the excitation wavelength. Combinations of dyes arranged to maximize FRET have been used to alleviate this problem. Unfortunately, this is only a partial solution because the efficiency of the energy transfer in FRET systems is governed by the overlap integral. If the overlap of the emission of the donor dye with the absorption of the acceptor dye is small, then the energy transfer will be small.
The central hypothesis of this work is that when a donor and acceptor systems are connected via a conjugated linker that does not allow them to become planar then rapid energy transfer from the donor to the acceptor may occur through bonds. Through-bond energy transfer is mechanistically different to the F¿rster basis for FRET, and there is no known requirement for overlap of the emission of the donor fragment with the absorption of the acceptor part. Thus, appropriately designed through-bond energy transfer cassettes could absorb photons via a donor part, or parts, at a convenient wavelength (eg 488 nm: excitation from an Ar-laser), transfer the energy rapidly through the conjugated linker to the acceptor fragment that emits at a far longer wavelength. There is no constraint on the difference between the donor absorption and the acceptor emission wavelengths in this scheme. It therefore is possible to design dyes that absorb strongly at a short wavelength and emit brightly with very similar intensities at several wavelengths (governed by the chemical nature of the acceptor) that are many wavenumbers apart, ie with excellent resolution. Coupling more than one donor in a conjugated system with an acceptor facilitates absorption of more light thereby increasing the intensity of the emission. In summary, through bond energy transfer cassettes have the potential to increase both the resolution and fluorescence intensities obtained from several probes excited by a laser source operating at a single wavelength.
Proteins generally cannot enter cells by passive diffusion, but require active transport. While some proteins can also be transported into cells by microinjection, entrapped in liposomes, viral vectors, and electroporation, such methods are laborious, time consuming, and often have low efficiencies. A recently developed method involving a peptide called Chariot (Active Motif, Carlsbad, CA) overcomes these problems. Chariot non-covalently complexes with proteins to peptides and facilitates their transport into cells. The Chariot peptide is non-cytotoxic, and crosses plasma membranes independent of transporters or specific receptors, thus avoiding the lysosomal degradative pathway. The Chariot peptide has high transport efficiency (65-95%) and has already been shown to rapidly co-transport large fluorescent proteins. Once internalized, the fluorescent protein-Chariot peptide complex rapidly dissociates, thereby allowing the fluorescent-tagged protein to proceed to its intracellular target while concomitantly the Chariot peptide is rapidly degraded.
Use of the Pep1 peptide (or similar carrier systems) to transfer protein/through-bond cassette conjugates into living cells opens new vistas of research. However, it is not evident that proteins imported into cells using the Chariot system are free in the cytosol; they could be encapsulated in intracellular vesicles. One of the objectives of our research is to elucidate this with single molecule studies performed at the center.
这个子项目是许多研究子项目中利用
资源由NIH/NCRR资助的中心拨款提供。子项目和
调查员(PI)可能从NIH的另一个来源获得了主要资金,
并因此可以在其他清晰的条目中表示。列出的机构是
该中心不一定是调查人员的机构。
通常需要同时观察生化混合物中的几个带有荧光标记的成分,即使用多路复用技术。当使用相同的激光光源激励所有标签时,用于此的装置最简单,并且这种布置还具有更容易解释数据的优点,因为所有标签接收相同的输入功率。然而,用一个激励源进行多路传输是困难的。这是因为靠近激发源发射的染料往往吸收光最有效,因为它们在该波长具有最大的吸收,而发射到更远的红光的染料吸收光谱红移,在激发波长获得的光子较少。为最大限度地提高FRET而安排的染料组合已被用于缓解这一问题。不幸的是,这只是一个部分解,因为FRET系统中能量传递的效率由重叠积分控制。如果给体染料的发射与受体染料的吸收重叠很小,那么能量转移就会很小。
这项工作的中心假设是,当供体和受体系统通过不允许它们成为平面的共轭连接体连接时,则可能通过键发生从供体到受体的快速能量转移。通键能量转移在力学上不同于FRET的F?rster基,并且没有已知要求给体片段的发射与受体部分的吸收重叠。因此,适当设计的通键能量转移盒可以通过一个或多个施主部分在方便的波长(例如488 nm:来自Ar激光的激发)吸收光子,并通过共轭连接物将能量快速传递到在更长波长下发射的受体片段。在该方案中,对施主吸收波长和受主发射波长之间的差异没有限制。因此,有可能设计出在短波长上强吸收,在几个波长(由受体的化学性质控制)上以非常相似的强度发出明亮的染料,这些波长相隔许多波数,即具有极好的分辨率。在共轭体系中,将一个以上的给体与受体偶联有助于吸收更多的光,从而增加发射的强度。总之,通过键能量转移盒有可能提高由工作在单一波长的激光光源激发的几个探针的分辨率和荧光强度。
蛋白质一般不能通过被动扩散进入细胞,但需要主动运输。虽然一些蛋白质也可以通过显微注射、脂质体、病毒载体和电穿孔等方式输送到细胞内,但这些方法费时费力,而且效率往往很低。最近开发的一种方法涉及一种名为Chariot的多肽(活性基序,加利福尼亚州卡尔斯巴德),克服了这些问题。Chariot与蛋白质形成多肽的非共价复合体,并促进它们向细胞内的转运。Chariot肽无细胞毒性,不依赖转运蛋白或特定受体穿过质膜,从而避免了溶酶体的降解途径。Chariot多肽具有很高的转运效率(65-95%),并且已经被证明可以快速地共运输大的荧光蛋白。一旦内化,荧光蛋白-Chariot多肽复合体迅速解离,从而允许荧光标记的蛋白质进入其细胞内目标,同时伴随着Chariot多肽迅速降解。
利用PEP1多肽(或类似的载体系统)将蛋白质/通过键盒结合物转移到活细胞中,开辟了新的研究前景。然而,使用Chariot系统输入细胞的蛋白质是否在胞浆中是游离的并不明显;它们可能被包裹在细胞内的小泡中。我们研究的目标之一是通过在该中心进行的单分子研究来阐明这一点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN BURGESS其他文献
KEVIN BURGESS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN BURGESS', 18)}}的其他基金
EKO Approach To Find Small Molecules That Perturb Protein Protein Interaction
EKO 方法寻找干扰蛋白质相互作用的小分子
- 批准号:
8714576 - 财政年份:2014
- 资助金额:
$ 2.38万 - 项目类别:
IMAGING AND TRACKING OF SINGLE CELL FLUORESCENT PROBES
单细胞荧光探针的成像和跟踪
- 批准号:
8362566 - 财政年份:2011
- 资助金额:
$ 2.38万 - 项目类别:
IMAGING AND TRACKING OF SINGLE CELL FLUORESCENT PROBES
单细胞荧光探针的成像和跟踪
- 批准号:
8169538 - 财政年份:2010
- 资助金额:
$ 2.38万 - 项目类别:
IMAGING AND TRACKING OF SINGLE CELL FLUORESCENT PROBES
单细胞荧光探针的成像和跟踪
- 批准号:
7955433 - 财政年份:2009
- 资助金额:
$ 2.38万 - 项目类别:
Development of an Optimized System for Non-covalent Delivery of Proteins into Cel
开发用于将蛋白质非共价递送至细胞的优化系统
- 批准号:
8548535 - 财政年份:2009
- 资助金额:
$ 2.38万 - 项目类别:
Development of an Optimized System for Non-covalent Delivery of Proteins into Cel
开发用于将蛋白质非共价递送至细胞的优化系统
- 批准号:
8135036 - 财政年份:2009
- 资助金额:
$ 2.38万 - 项目类别:
Development of an Optimized System for Non-covalent Delivery of Proteins into Cel
开发用于将蛋白质非共价递送至细胞的优化系统
- 批准号:
7938881 - 财政年份:2009
- 资助金额:
$ 2.38万 - 项目类别:
IMAGING AND TRACKING OF SINGLE CELL FLUORESCENT PROBES
单细胞荧光探针的成像和跟踪
- 批准号:
7723842 - 财政年份:2008
- 资助金额:
$ 2.38万 - 项目类别:
INVESTIGATING NOVEL DNA FLUORSCENCE LABELING PROBES
研究新型 DNA 荧光标记探针
- 批准号:
7373136 - 财政年份:2006
- 资助金额:
$ 2.38万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 2.38万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 2.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 2.38万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 2.38万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 2.38万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 2.38万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 2.38万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 2.38万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 2.38万 - 项目类别:
Standard Grant