Modeling the structure & evolution of regulatory regions in eukaryotic gemomes
结构建模
基本信息
- 批准号:7254422
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-26 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ModelArchitectureBase SequenceCase StudyClassCodeCommunitiesComparative StudyComplementComplexComputational BiologyComputer AnalysisComputer SimulationDNADNA Sequence RearrangementDataDevelopmentDiseaseDrosophila genusE2F transcription factorsElementsEnhancersEnvironmentEvolutionFaceFamilyFunctional RNAGene ExpressionGene Expression RegulationGene TargetingGenesGenetic TranscriptionGenomeGenomicsGoalsHeartHumanImageIn Situ HybridizationIndiumInstitutesLeadLearningMethodsModelingMolecular BiologyNucleic Acid Regulatory SequencesNumbersOrganismPhylogenetic AnalysisProcessProteinsPublic HealthRNARNA Polymerase IIRegulationResearchResearch PersonnelScience PolicySeriesSiteStatistical ModelsStructureTimeTodayTranscriptTranscription Initiation SiteTranscriptional RegulationWorkbasecombinatorialcomparativedigital imagingexperienceflyfunctional genomicsgenome sequencinginterestmarkov modelprogramspromoterresearch studysizespatiotemporaltool
项目摘要
DESCRIPTION (provided by applicant): Transcription is at the heart of the regulation of gene expression, yet the computational analysis of transcription regulation currently faces a number of challenges and opportunities: The large number of sequenced genomes allows to study and exploit the conservation of regulatory sequences, but algorithms that do so in a rigorous framework are still scarce. Detailed data of spatiotemporal gene expression has become available, enabling us to use this information to elucidate regulatory interactions in the development of complex organisms. The long-term goal is to build computational models to infer regulatory networks and their evolution in the development of model organisms and ultimately humans. The objective of this particular proposal is to develop algorithms to analyze the conservation of gene regulation on the sequence level, as well as an integrated approach to model conserved regulatory regions important for development. Its specific aims are: (1) To decipher the precise requirements to define a functional transcription start site, based on a comparative study of the conservation of core promoter elements in two fly genomes, and build a model for genome-wide comparative annotation. (2) To develop and implement an efficient progressive multiple alignment algorithm for non-coding regulatory sequences based on phylogenetic hidden Markov models, and to study the evolution of core promoters in a wider set of species. (3) To extend the framework set by this algorithm to more complex regulatory modules (such as developmental enhancers and E2F target genes), and to incorporate prior information on putative upstream factors to predict regulatory interactions. Computational predictions will be validated by a small number of experiments. The proposed research is expected to advance the understanding on the evolution of regulatory regions, and how to build computational models that accurately utilize sequence information from several species. Relevance to public health: Understanding how gene regulation is encoded in the genome is undoubtedly one of the most interesting challenges in molecular biology today, and it is intuitive that errors occurring in this machinery lead to mis-expression of genes, and may often be important in genetically based diseases. Our research will help to find the exact regulatory regions in DNA, both computationally and experimentally, and to learn the mechanisms that control the expression of genes in model organisms and humans.
描述(由申请人提供):转录是基因表达调控的核心,然而转录调控的计算分析目前面临着许多挑战和机遇:大量测序的基因组允许研究和利用调控序列的保守性,但在严格框架中这样做的算法仍然很少。时空基因表达的详细数据已经成为可用的,使我们能够利用这些信息来阐明复杂生物体发育中的调控相互作用。长期目标是建立计算模型来推断调控网络及其在模型生物和最终人类发展中的演变。这个特别的建议的目的是开发算法来分析序列水平上的基因调控的保守性,以及一个综合的方法来模拟保守的调控区域的发展是重要的。其具体目标是:(1)通过对两个果蝇基因组中核心启动子保守性的比较研究,阐明了确定功能性转录起始位点的精确要求,并建立了全基因组比较注释模型。(2)基于系统发育隐马尔可夫模型,开发并实现非编码调控序列的高效渐进式多重比对算法,并研究核心启动子在更广泛物种中的进化。(3)将该算法设定的框架扩展到更复杂的调节模块(例如发育增强子和E2 F靶基因),并结合有关推定上游因子的先验信息来预测调节相互作用。计算预测将通过少量实验进行验证。拟议的研究预计将促进对调控区进化的理解,以及如何建立准确利用多个物种序列信息的计算模型。与公共卫生的相关性:理解基因调控如何在基因组中编码无疑是当今分子生物学中最有趣的挑战之一,并且直观地说,这种机制中发生的错误会导致基因的错误表达,并且在遗传性疾病中通常很重要。我们的研究将有助于在计算和实验上找到DNA中的确切调控区域,并了解控制模式生物和人类基因表达的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uwe Ohler其他文献
Uwe Ohler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uwe Ohler', 18)}}的其他基金
Posttranscriptional regulation by mRNA-binding shuttling and transport proteins
mRNA 结合穿梭和转运蛋白的转录后调节
- 批准号:
8412350 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Posttranscriptional regulation by mRNA-binding shuttling and transport proteins
mRNA 结合穿梭和转运蛋白的转录后调节
- 批准号:
8858643 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Posttranscriptional regulation by mRNA-binding shuttling and transport proteins
mRNA 结合穿梭和转运蛋白的转录后调节
- 批准号:
8668118 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Posttranscriptional regulation by mRNA-binding shuttling and transport proteins
mRNA 结合穿梭和转运蛋白的转录后调节
- 批准号:
8550121 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Modeling the structure & evolution of regulatory regions in eukaryotic gemomes
结构建模
- 批准号:
7921263 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Modeling the structure & evolution of regulatory regions in eukaryotic gemomes
结构建模
- 批准号:
8134495 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Modeling the structure & evolution of regulatory regions in eukaryotic gemomes
结构建模
- 批准号:
7882265 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Modeling the structure & evolution of regulatory regions in eukaryotic gemomes
结构建模
- 批准号:
7658972 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Modeling the structure & evolution of regulatory regions in eukaryotic gemomes
结构建模
- 批准号:
7474778 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant