Trial-by-Trial Human Generalization of Sense into Action

人类将感知转化为行动的试验

基本信息

  • 批准号:
    7211268
  • 负责人:
  • 金额:
    $ 23.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-02-15 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Despite the centrality of motor learning to basic and clinical neuroscience, we know very little about the quantitative role neural systems play in the transformation of senses into adapted control. The experiments presented here will challenge normal human subjects with perturbations of varying strengths, durations, frequency of application, biases, and spatial complexities both within and across movements. The variability of these perturbations will generate a template with which we will identify subtleties in trial-by-trial adaptation. These interrogations, coupled with novel state space analyses, will enable a thorough understanding of the transformation of specific sensory experiences into immediate, incremental adaptations in predictive control, greatly enhancing our quantitative understanding of human motor adaptation. Experience enables us to build internal dynamic models of our movement environment. Investigators of this internal dynamic adaptation have hypothesized two components of learning: the abstraction of an error signal from previous movements and the application of this error to either specify or generalize learning across movement space. Human trial-by-trial adaptation has, to date, suggested that adaptation constantly scales with sensed error and generalizes broadly across movement space. However, preliminary results from the PI have discovered surprising flexibility in both components of learning: sensory feedback can induce adaptation strikingly disproportional to movement error, and environments can induce narrowing of generalization across movement space. Here we propose to identify the necessary sensory experiences to induce these newly established changes in the fundamental computations people execute to transform single movement sense into incremental adaptation. These results will illuminate how the nervous system performs real-timed signal processing to improve motor performance. The resultant models will help the neuroscience and biological modeling community to better connect behavior to its underlying physiological basis. These insights will also be of use to investigate the full repertoire of normal motor control and how control fails in disease states. We aim to formulate the scientific basis of how rehabilitation can optimally help patients generalize beyond clinical training to improve motor function in their daily lives.
描述(由申请人提供):尽管运动学习对于基础和临床神经科学至关重要,但我们对神经系统在感觉转化为适应性控制中所起的定量作用知之甚少。这里介绍的实验将挑战正常人类受试者,使其受到不同强度、持续时间、应用频率、偏差和运动内部和运动之间的空间复杂性的扰动。这些扰动的可变性将生成一个模板,我们将通过该模板来识别逐个试验适应中的微妙之处。这些询问与新颖的状态空间分析相结合,将使我们能够全面了解特定感官体验向预测控制中即时、增量适应的转变,从而极大地增强我们对人类运动适应的定量理解。经验使我们能够建立运动环境的内部动态模型。这种内部动态适应的研究人员假设了学习的两个组成部分:从先前的运动中提取误差信号,以及应用该误差来指定或概括整个运动空间的学习。迄今为止,人类反复试验的适应表明,适应不断地随着感知到的错误而变化,并广泛地推广到整个运动空间。然而,PI 的初步结果发现,学习的两个组成部分都具有令人惊讶的灵活性:感觉反馈可以引起与运动错误明显不成比例的适应,而环境可以导致整个运动空间的泛化范围缩小。在这里,我们建议确定必要的感官体验,以引起人们执行的基本计算的这些新建立的变化,以将单一的运动感觉转化为渐进的适应。这些结果将阐明神经系统如何进行实时信号处理以提高运动表现。由此产生的模型将帮助神经科学和生物建模界更好地将行为与其潜在的生理基础联系起来。这些见解也将有助于研究正常运动控制的全部功能以及疾病状态下控制如何失败。我们的目标是建立科学基础,说明康复如何能够最好地帮助患者在临床训练之外进行推广,以改善日常生活中的运动功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KURT A THOROUGHMAN其他文献

KURT A THOROUGHMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KURT A THOROUGHMAN', 18)}}的其他基金

Trial-by-Trial Human Generalization of Sense into Action
人类将感知转化为行动的试验
  • 批准号:
    7768489
  • 财政年份:
    2007
  • 资助金额:
    $ 23.84万
  • 项目类别:
Trial-by-Trial Human Generalization of Sense into Action
人类将感知转化为行动的试验
  • 批准号:
    7355975
  • 财政年份:
    2007
  • 资助金额:
    $ 23.84万
  • 项目类别:
Trial-by-Trial Human Generalization of Sense into Action
人类将感知转化为行动的试验
  • 批准号:
    8053914
  • 财政年份:
    2007
  • 资助金额:
    $ 23.84万
  • 项目类别:
Trial-by-Trial Human Generalization of Sense into Action
人类将感知转化为行动的试验
  • 批准号:
    7576940
  • 财政年份:
    2007
  • 资助金额:
    $ 23.84万
  • 项目类别:
CRCNS: Computational Integration of Human Adaptation and Primate Neurophysiology
CRCNS:人类适应和灵长类动物神经生理学的计算整合
  • 批准号:
    7215928
  • 财政年份:
    2006
  • 资助金额:
    $ 23.84万
  • 项目类别:
CRCNS: Computational Integration of Human Adaptation and Primate Neurophysiology
CRCNS:人类适应和灵长类动物神经生理学的计算整合
  • 批准号:
    7488567
  • 财政年份:
    2006
  • 资助金额:
    $ 23.84万
  • 项目类别:
CRCNS: Computational Integration of Human Adaptation and Primate Neurophysiology
CRCNS:人类适应和灵长类动物神经生理学的计算整合
  • 批准号:
    7253168
  • 财政年份:
    2006
  • 资助金额:
    $ 23.84万
  • 项目类别:
CRCNS: Computational Integration of Human Adaptation and Primate Neurophysiology
CRCNS:人类适应和灵长类动物神经生理学的计算整合
  • 批准号:
    7674660
  • 财政年份:
    2006
  • 资助金额:
    $ 23.84万
  • 项目类别:
CRCNS: Computational Integration of Human Adaptation and Primate Neurophysiology
CRCNS:人类适应和灵长类动物神经生理学的计算整合
  • 批准号:
    7911464
  • 财政年份:
    2006
  • 资助金额:
    $ 23.84万
  • 项目类别:
Plasticity of inhibitory synapses in rhythmic networks
节律网络中抑制性突触的可塑性
  • 批准号:
    6340431
  • 财政年份:
    2001
  • 资助金额:
    $ 23.84万
  • 项目类别:

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Studentship
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
  • 批准号:
    2337351
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Continuing Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
  • 批准号:
    2402252
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
  • 批准号:
    2322310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Continuing Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
  • 批准号:
    24K18449
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Standard Grant
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
  • 批准号:
    23K20274
  • 财政年份:
    2024
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了