ADAPTIVE AND PARALLEL SIMULATIONS OF CARDIAC FLUID DYNAMICS AND ELECTROPHYSIOLO
心液动力学和电生理学的自适应并行模拟
基本信息
- 批准号:7601498
- 负责人:
- 金额:$ 0.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:BloodBundle-Branch BlockCardiacComputer Retrieval of Information on Scientific Projects DatabaseComputer softwareCoupledCouplingDataDilated CardiomyopathyElectrophysiology (science)EquationFiberFundingGenerationsGoalsGrantHeartHeart DiseasesHeart ValvesImageInstitutesInstitutionLiquid substanceLocalizedMechanicsMedical DeviceMethodsModelingMuscleMuscle ContractionPhysiologyRangeRateResearchResearch PersonnelResourcesSourceStructural ModelsStructureTimeUnited States National Institutes of HealthVentricularbasecluster computingdesigndistributed memoryheart functionpressuresimulationsupercomputerthree-dimensional modeling
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
This project aims to perform simulations of cardiac blood-muscle-valve mechanics and electrophysiology, with a long-range goal of performing coupled simulations of mechanics and electrophysiology. Although the equations that describe cardiac mechanics and electrophysiology are different, we employ a common theoretical framework, the immersed boundary (IB) method, for both aspects of heart function. The IB method was introduced as an approach to problems of fluid-structure interaction (e.g., cardiac fluid mechanics), but we have recently extended it to describe cardiac electrophysiology. We have recently developed a unified software implementation of the IB approach to both cardiac mechanics and electrophysiology. This simulation framework provides support for distributed-memory parallelism and spatial adaptivity, thereby allowing us to use modern supercomputers effectively and efficiently. Three-dimensional models of the structure of the heart have been developed by McQueen and Peskin as part of a longterm research effort at the Courant Institute that aims to use simulations of cardiac blood-muscle-valve mechanics to aid in the design of artificial heart valves and other medical devices and therapies. We have recently applied our new adaptive version of the IB method to the first generation of the McQueen/Peskin model of the heart. During this project, we shall perform additional simulations of cardiac mechanics, but replacing this earlier idealized model of the structure of the heart with a recently-developed second generation structural model that is based on CT imaging data. In order to obtain realistic pressures and flow rates efficiently, we shall utilize the adaptive capabilities of our simulation framework to deploy extremely fine computational grids in a localized manner, e.g., in the vicinity of the heart valve leaflets and the vortices shed from these leaflets. Using this same anatomically realistic CT-derived fiber structure, we shall also perform adaptive three-dimensional simulations of cardiac electrophysiology. These models of cardiac mechanics and electrophysiology will ultimately be combined to yield an electro-mechano-fluidic model of the heart, in which the three-dimensional model of the electrical function of the heart will be used to control the timing of the muscle contractions in a realistic manner. Such a simulation platform is required to study treatments for diseases of the heart which crucially involve both aspects of heart function, e.g., dilated cardiomyopathy with dyssynchronous mechanical and electrical activation resulting from bundle branch block, and its treatment via bi-ventricular pacing (cardiac resynchronization therapy). The task of coupling our models of cardiac mechanics and electrophysiology will be simplified by our use of a unified simulation framework for both aspects of cardiac physiology.
该子项目是利用该技术的众多研究子项目之一
资源由 NIH/NCRR 资助的中心拨款提供。子项目和
研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金,
因此可以在其他 CRISP 条目中表示。列出的机构是
对于中心来说,它不一定是研究者的机构。
该项目旨在对心脏、血液、肌肉、瓣膜力学和电生理学进行模拟,长期目标是对力学和电生理学进行耦合模拟。尽管描述心脏力学和电生理学的方程不同,但我们针对心脏功能的两个方面采用了共同的理论框架,即浸入边界(IB)方法。 IB 方法是作为解决流体-结构相互作用问题(例如心脏流体力学)的方法而引入的,但我们最近将其扩展为描述心脏电生理学。我们最近开发了针对心脏力学和电生理学的 IB 方法的统一软件实现。该模拟框架为分布式内存并行性和空间自适应性提供支持,从而使我们能够有效且高效地使用现代超级计算机。麦奎因和佩斯金开发了心脏结构的三维模型,作为库朗研究所长期研究工作的一部分,旨在利用心脏血液-肌肉-瓣膜力学的模拟来帮助设计人造心脏瓣膜和其他医疗设备和疗法。我们最近将新的 IB 方法自适应版本应用于第一代 McQueen/Peskin 心脏模型。在这个项目中,我们将对心脏力学进行额外的模拟,但用最近开发的基于 CT 成像数据的第二代结构模型取代早期理想化的心脏结构模型。为了有效地获得真实的压力和流速,我们将利用模拟框架的自适应功能以局部方式部署极其精细的计算网格,例如在心脏瓣膜小叶和这些小叶散发的涡流附近。使用同样的解剖学上真实的 CT 衍生纤维结构,我们还将执行心脏电生理学的自适应三维模拟。这些心脏力学和电生理学模型最终将结合起来产生心脏的电-机械-流体模型,其中心脏电功能的三维模型将用于以现实的方式控制肌肉收缩的时间。需要这样的模拟平台来研究心脏疾病的治疗方法,这些疾病关键涉及心脏功能的两个方面,例如,由于束支传导阻滞导致机械和电激活不同步的扩张型心肌病,以及通过双心室起搏(心脏再同步治疗)进行的治疗。通过对心脏生理学两个方面使用统一的模拟框架,将简化心脏力学和电生理学模型的耦合任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BOYCE GRIFFITH其他文献
BOYCE GRIFFITH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BOYCE GRIFFITH', 18)}}的其他基金
ADAPTIVE AND PARALLEL SIMULATIONS OF CARDIAC FLUID DYNAMICS AND ELECTROPHYSIOLO
心液动力学和电生理学的自适应并行模拟
- 批准号:
7956145 - 财政年份:2009
- 资助金额:
$ 0.03万 - 项目类别:
ADAPTIVE AND PARALLEL SIMULATIONS OF CARDIAC FLUID DYNAMICS AND ELECTROPHYSIOLO
心液动力学和电生理学的自适应并行模拟
- 批准号:
7723235 - 财政年份:2008
- 资助金额:
$ 0.03万 - 项目类别:
相似海外基金
Non-invasive hemodynamic sensor patch for remote, early detection and prevention of heart failure with left bundle branch block
无创血流动力学传感器贴片,用于远程、早期检测和预防左束支传导阻滞心力衰竭
- 批准号:
10250749 - 财政年份:2021
- 资助金额:
$ 0.03万 - 项目类别: