Dual Expression Control for Studying Drosophila Neural Circuits
用于研究果蝇神经回路的双表达控制
基本信息
- 批准号:7681013
- 负责人:
- 金额:$ 20.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:AllelesAnatomyAnimal ModelBinding SitesBrainCell CommunicationCell physiologyCellsClinicalColorComplexControlled StudyDegenerative DisorderDevelopmentDrosophila genusDynaminEnhancersGene ExpressionGenerationsGeneticGoalsGrowth ConesIndividualInjuryInterventionKnowledgeLabelLeadMapsMediatingMethodsMitoticMolecularMorphologyNerve DegenerationNervous system structureNeuraxisNeuritesNeurobiologyNeurogliaNeuronsOrganismPhosphorusPopulationProteinsRNA InterferenceReagentReporterReporter GenesReportingResearch PersonnelResearch SupportSisterStagingSynapsesSystemTechniquesTemperatureTimeTransgenesTransgenic OrganismsTwin Multiple BirthVP 16basebrain cellcell typegene functionin vivointerestmutantnerve stem cellnervous system disorderneural circuitneurodevelopmentneuron developmentneurotransmitter releasenew therapeutic targetpostsynapticpresynapticpromoterpublic health relevancerelating to nervous systemsingle cell analysisspatiotemporaltooltool developmenttranscription factor
项目摘要
DESCRIPTION (provided by applicant): Binary transgene induction with distinct subtype-specific drivers permits marking and/or manipulation of different subsets of brain cells in intact organisms. However, one cannot differentially mark or independently manipulate distinct brain cells (e.g. specific neurons and their synaptic partners) in the same organism with only one binary transgene induction system. Here we propose to build tools for studying Drosophila neural circuit development with two noninterfering binary transcriptional systems (GAL4/UAS and LexA/lexAop). We will isolate diverse LexA drivers for targeting a large variety of different brain cells independently of GAL4/UAS. We will also generate various LexA-dependent transgenes for selectively marking or manipulating LexA-positive cells. These reagents would constitute what most Drosophila neurobiologists need to immediately apply the power of two independent binary transgene induction systems to their studies of neural circuit development. In addition, we will build new genetic mosaic toolkits on top of LexA/lexAop and without the GAL4 repressor GAL80. These GAL4/UAS/GAL80-independent genetic mosaic systems guarantee maximal versatility in the co-application of multiple genetic/transgenic tools. The simultaneous application of two independent binary transgene induction systems promises to further revolutionize modern neurobiological research by supporting complex genetic studies involving respective analysis or differential manipulation of distinct brain cells at the same time. This will allow more thorough elucidation and finer spatiotemporal manipulation of neural circuit development, and potentially lead to the identification of new therapeutic targets for remedying abnormal brain development or restoring neural circuitry in various neurodegenerative conditions. PUBLIC HEALTH RELEVANCE Wiring of neural circuits involves intricate cell-cell interactions among neurons and between neurons and glial cells that help govern individual growth cones of neurites to navigate, elaborate, and finally make synaptic contacts with specific targets. Many congenital malfunctions of the brain result from aberrant wiring of neural circuits. To understand how wiring of circuitry goes awry in such neurological disorders requires elucidation of the cellular and molecular bases of the diverse complex processes of cell-cell interactions. Furthermore, knowledge about neural circuit development may provide powerful clinical approaches for interventions during degenerative disorders or after injury. The goal of this project is to build tools for better studying cell-cell interactions in the highly convoluted central nervous system. We propose to develop such tools in the fruit fly Drosophila, a powerful model organism for understanding brain development and function. Binary transgene induction with distinct subtype-specific drivers permits marking and/or manipulation of different subsets of brain cells in intact organisms. However, one cannot differentially mark or independently manipulate distinct brain cells at the same time with only one binary transgene induction system. To independently target multiple neuron types or presynaptic versus postsynaptic cells or neurons versus glia, we propose to establish a second widely applicable binary transgene induction system in Drosophila. This involves generation of both subtype-specific drivers and a set of driver-dependent transgenes for marking or manipulating various specific Drosophila brain cells independently of the existing binary transcriptional system and all its derived genetic/transgenic tools. In addition, we will build more versatile genetic mosaic techniques on top of the new binary transgene induction system. The simultaneous application of two independent binary transgene induction systems promises to further revolutionize modern neurobiological research by supporting complex genetic studies involving respective analysis or differential manipulation of distinct brain cells in the same organism. Such studies will have fundamental impacts on our detailed mapping of neural circuitry, the elucidation and manipulation of neural circuit development, and the ultimate understanding of brain development and function.
描述(由申请人提供):具有不同亚型特异性驱动因子的二元转基因诱导允许标记和/或操纵完整生物体中的脑细胞的不同子集。然而,人们不能仅用一个二元转基因诱导系统在同一生物体中差异标记或独立操纵不同的脑细胞(例如特定神经元及其突触伴侣)。在这里,我们建议建立两个非干扰的二元转录系统(GAL 4/UAS和莱克萨/lexAop)研究果蝇神经回路的发展工具。我们将分离出不同的莱克萨驱动程序,用于独立于GAL 4/UAS靶向大量不同的脑细胞。我们还将产生各种LexA依赖性转基因,用于选择性标记或操纵LexA阳性细胞。这些试剂将构成大多数果蝇神经生物学家所需要的,以立即将两个独立的二元转基因诱导系统的力量应用于他们的神经回路发育研究。此外,我们还将在莱克萨/lexAop的基础上构建新的遗传镶嵌工具包,而不使用GAL 4阻遏物GAL 80。这些GAL 4/UAS/GAL 80独立的遗传镶嵌系统保证了多种遗传/转基因工具共同应用的最大通用性。两个独立的二元转基因诱导系统的同时应用,有望通过支持复杂的遗传研究,涉及不同的脑细胞在同一时间的各自的分析或差异操作,进一步彻底改变现代神经生物学研究。这将允许神经回路发育的更彻底的阐明和更精细的时空操纵,并可能导致识别用于补救异常脑发育或恢复各种神经退行性疾病中的神经回路的新的治疗靶点。神经回路的布线涉及神经元之间以及神经元和神经胶质细胞之间复杂的细胞-细胞相互作用,这些相互作用有助于控制神经突的单个生长锥进行导航、精心制作,并最终与特定靶点进行突触接触。许多先天性的脑功能障碍是由于神经回路的异常接线造成的。要了解这些神经系统疾病中的线路是如何出错的,需要阐明细胞与细胞相互作用的各种复杂过程的细胞和分子基础。此外,有关神经回路发育的知识可能为退行性疾病期间或损伤后的干预提供强有力的临床方法。该项目的目标是建立工具,以便更好地研究高度复杂的中枢神经系统中的细胞间相互作用。我们建议在果蝇中开发这样的工具,果蝇是一种强大的模型生物,用于了解大脑的发育和功能。具有不同亚型特异性驱动因子的二元转基因诱导允许标记和/或操纵完整生物体中的脑细胞的不同子集。然而,人们不能仅用一个二元转基因诱导系统同时差异标记或独立操纵不同的脑细胞。为了独立靶向多种神经元类型或突触前与突触后细胞或神经元与神经胶质细胞,我们建议在果蝇中建立第二个广泛适用的二元转基因诱导系统。这涉及生成亚型特异性驱动程序和一组驱动程序依赖性转基因,用于独立于现有的二元转录系统及其所有衍生的遗传/转基因工具标记或操纵各种特定的果蝇脑细胞。此外,我们将在新的二元转基因诱导系统之上建立更通用的遗传镶嵌技术。两个独立的二元转基因诱导系统的同时应用,有望通过支持复杂的遗传研究,包括在同一生物体中的不同脑细胞的各自分析或差异操作,进一步彻底改变现代神经生物学研究。这些研究将对我们详细绘制神经回路、阐明和操纵神经回路发育以及最终理解大脑发育和功能产生根本性影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TZUMIN LEE其他文献
TZUMIN LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TZUMIN LEE', 18)}}的其他基金
Dual Expression Control for Studying Drosophila Neural Circuits
用于研究果蝇神经回路的双表达控制
- 批准号:
7498070 - 财政年份:2008
- 资助金额:
$ 20.5万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Research Grant