Dynamic Scoring: A novel method for quantitative modeling of guest-host associati

动态评分:宾主关联定量建模的新方法

基本信息

  • 批准号:
    7663070
  • 负责人:
  • 金额:
    $ 14.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of this proposal is to develop a new computational method to efficiently quantify protein-ligand association in a way that explicitly considers protein flexibility. Molecular recognition between molecules through noncovalent association plays a fundamental role in virtually all processes in biological systems. Although many computational concepts exist to simulate drug-protein recognition, an efficient and accurate quantification of these interactions has still not been achieved. We propose a novel computational method that addresses some of the most serious shortcomings of present approaches: protein flexibility and a reliable quantification of binding affinities. We introduce the new concept of a hypothetical 'ligand model': a virtual ligand that binds to the protein and dynamically changes its shape and properties during molecular dynamics (MD) simulations, essentially representing a large ensemble of different chemical species binding to the same target protein. This approach allows sampling protein conformations relevant to its interaction with chemicals or drug candidates. This method also will allow us to probe conformational flexibility of the protein upon ligand binding. The 'ligand-model' concept will result in an efficient decoupling of sampling using MD simulations and subsequent docking. This method consequently combines both accuracy in quantifying molecular recognition and efficiency in virtual screening of large compound libraries. The software is anticipated to be of wide interest for researchers in all areas of protein-ligand interactions, including drug design, structural biology, and environmental toxicology. PUBLIC HEALTH RELEVANCE Molecular recognition between molecules through noncovalent association plays a fundamental role in virtually all processes in biological systems. This project is aimed toward developing a novel computational method to efficiently quantify protein-ligand binding, explicitly including the dynamics of the protein. It will have wide applicability for drug design and environmental toxicology.
描述(由申请人提供):本提案的目标是开发一种新的计算方法,以明确考虑蛋白质灵活性的方式有效量化蛋白质-配体缔合。通过非共价缔合的分子之间的分子识别在生物系统中的几乎所有过程中起着基本作用。虽然存在许多计算概念来模拟药物-蛋白质识别,但这些相互作用的有效和准确的定量仍然没有实现。我们提出了一种新的计算方法,解决了一些最严重的缺点,目前的方法:蛋白质的灵活性和可靠的定量结合亲和力。我们引入了一个假设的“配体模型”的新概念:一个虚拟的配体,结合到蛋白质和动态改变其形状和性质在分子动力学(MD)模拟,基本上代表了一个大的合奏不同的化学物种结合到同一个目标蛋白质。这种方法允许对与其与化学品或候选药物相互作用相关的蛋白质构象进行采样。这种方法也将允许我们探测配体结合后蛋白质的构象灵活性。“配体模型”的概念将导致使用MD模拟和随后的对接的采样的有效解耦。因此,该方法结合了定量分子识别的准确性和大型化合物文库虚拟筛选的效率。预计该软件将引起蛋白质-配体相互作用所有领域研究人员的广泛兴趣,包括药物设计,结构生物学和环境毒理学。 公共卫生相关性分子间通过非共价缔合的分子识别在生物系统的几乎所有过程中起着基本作用。该项目旨在开发一种新的计算方法来有效地量化蛋白质-配体结合,明确包括蛋白质的动力学。它将在药物设计和环境毒理学方面具有广泛的适用性。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solvent interaction energy calculations on molecular dynamics trajectories: increasing the efficiency using systematic frame selection.
Efficient incorporation of protein flexibility and dynamics into molecular docking simulations.
  • DOI:
    10.1021/bi2004558
  • 发表时间:
    2011-07-19
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Lill MA
  • 通讯作者:
    Lill MA
Significant enhancement of docking sensitivity using implicit ligand sampling.
Predicting flexible loop regions that interact with ligands: the challenge of accurate scoring.
Utilizing experimental data for reducing ensemble size in flexible-protein docking.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Markus Alexander Lill其他文献

Markus Alexander Lill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Markus Alexander Lill', 18)}}的其他基金

Novel Computational Methods for Modeling Cytochrome P450 Mediated Drug Metabolism
细胞色素 P450 介导的药物代谢建模的新计算方法
  • 批准号:
    8304931
  • 财政年份:
    2010
  • 资助金额:
    $ 14.87万
  • 项目类别:
Novel Computational Methods for Modeling Cytochrome P450 Mediated Drug Metabolism
细胞色素 P450 介导的药物代谢建模的新计算方法
  • 批准号:
    8706177
  • 财政年份:
    2010
  • 资助金额:
    $ 14.87万
  • 项目类别:
Novel Computational Methods for Modeling Cytochrome P450 Mediated Drug Metabolism
细胞色素 P450 介导的药物代谢建模的新计算方法
  • 批准号:
    7991977
  • 财政年份:
    2010
  • 资助金额:
    $ 14.87万
  • 项目类别:
Novel Computational Methods for Modeling Cytochrome P450 Mediated Drug Metabolism
细胞色素 P450 介导的药物代谢建模的新计算方法
  • 批准号:
    8134421
  • 财政年份:
    2010
  • 资助金额:
    $ 14.87万
  • 项目类别:
Novel Computational Methods for Modeling Cytochrome P450 Mediated Drug Metabolism
细胞色素 P450 介导的药物代谢建模的新计算方法
  • 批准号:
    8515459
  • 财政年份:
    2010
  • 资助金额:
    $ 14.87万
  • 项目类别:
Dynamic Scoring: A novel method for quantitative modeling of guest-host associati
动态评分:宾主关联定量建模的新方法
  • 批准号:
    7510816
  • 财政年份:
    2008
  • 资助金额:
    $ 14.87万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了