OSTEOGENESIS AND REPAIR IN LIVING INTACT BONE
活体完整骨的成骨和修复
基本信息
- 批准号:7596930
- 负责人:
- 金额:$ 38.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2012-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAlkaline PhosphataseAnimalsBiocompatible MaterialsBiologicalBiologyBioluminescenceBiomaterials ResearchBone MatrixBone RegenerationBone TissueCell ProliferationCellsComplementDefectEnvironmentEnzymesEventFemurFigs - dietaryFluorineFutureGene ExpressionGenesGenetic TranscriptionGoalsGrowthHealedHistologyHumanImageImaging technologyIn SituIn VitroLifeLigandsMagnetic Resonance SpectroscopyMeasurementMeasuresMetaphysisMethodsMineralsModelingMolecularMusOrthopedicsOsteogenesisPathway interactionsPatternPhasePhysiologicalPhysiologyProcessProteinsRattusRegulationRegulator GenesRepair ComplexReporter GenesSiteSpecificityStagingSurfaceTestingTimeTransgenic AnimalsTransgenic OrganismsValidationVascular Endothelial Growth Factor Receptor-2Vascular Endothelial Growth Factorsangiogenesisbasebonebone cellbone healingclinical applicationclinical practiceclinically relevanthealingimaging modalityimplantationin vivoinnovationinsightmineralizationmolecular imagingnovelosteogenicprecursor cellprogramsprototyperepairedresearch studyresponsetheoriestranscription factor
项目摘要
DESCRIPTION (provided by applicant): Bone formation and repair are complex processes involving alterations in gene expression with a concomitant increase of cells expressing proteins and enzymes essential for angiogenesis, matrix synthesis, and mineralization. Our long range goal is to gain insight into the regulation of osteogenic pathways under physiological conditions in living, intact bone. The hypothesis underlying this proposal is that due to dynamic and milieu-dependent regulation, many molecular bone formation pathways are concealed or different in vitro or even in situ as compared to in vivo. In an innovative approach, we will combine molecular imaging in vivo with conventional post mortem analysis. Imaging will offer non-invasive observation of bone biology under physiological conditions, while ex vivo analysis will allow for validation of the in vivo findings and for correlation between in vivo and in vitro analyses. Given that transcriptional programs initiate and govern osteogenesis, the first specific aim is directed to address our incomplete understanding of how angiogenic gene expression is regulated during bone healing. Utilizing innovative transgenic imaging reporter gene mice, we will test the hypothesis that a dynamic pattern of vascular endothelial growth factor (VEGF) receptor 2 and VEGF expression occurs during bone defect healing and that the transcription factor early growth response gene 1 (EGR-1) is an in vivo regulator of these angiogenic transcription pathways. The second aim focuses on bone precursor cell proliferation, an event that typically precedes bone matrix and mineral formation. Current models describe cell proliferation as crucial for de novo bone formation on orthopaedic biomaterials. However, the in vivo timing, magnitude, and specificity of this biological response remain unclear. Using a novel imaging-based proliferation measurement, we propose to test, in an in vivo environment, whether biomaterial surfaces provoke differential proliferative responses in primary human bone precursor cells. Our third aim will provide proof-of-principle that enzymatic bone cell activity can be detected and measured directly in living, intact bone using a small imaging molecule and a clinically relevant imaging paradigm. Together, the proposed studies will serve as model for future experiments which utilize imaging technology in addition to traditional ex vivo methods for the analysis of bone formation pathways. PUBLIC HEALTH RELEVANCE: This interdisciplinary project plans to investigate the biology that controls osteogenesis in living bone under physiological conditions. To begin to establish the relevance of osteogenic transcription, cell proliferation and bone cell activity in vivo, our three aims will introduce and validate transgenic imaging reporter gene mice, imaging-based proliferation measurement and an innovative small imaging molecule strategy, respectively. In addition, we will utilize the transgenic animals to study angiogenic transcription during bone healing and take advantage of the in vivo proliferation measurement to investigate the growth response associated with de novo bone formation.
描述(由申请人提供):骨形成和修复是一个复杂的过程,涉及基因表达的改变,伴随着表达血管生成、基质合成和矿化所必需的蛋白质和酶的细胞的增加。我们的长期目标是深入了解生理条件下在活的完整骨中成骨途径的调节。该提议的假设是,由于动态和环境依赖性调节,许多分子骨形成途径在体外或甚至原位与体内相比是隐藏的或不同的。在一个创新的方法中,我们将联合收割机结合体内分子成像与传统的死后分析。成像将在生理条件下提供骨生物学的非侵入性观察,而离体分析将允许验证体内发现以及体内和体外分析之间的相关性。鉴于转录程序启动和管理骨生成,第一个具体的目标是针对解决我们的不完全理解血管生成基因的表达是如何在骨愈合过程中进行调节。利用创新的转基因成像报告基因小鼠,我们将测试的假设,血管内皮生长因子(VEGF)受体2和VEGF表达的动态模式发生在骨缺损愈合和转录因子早期生长反应基因1(EGR-1)是这些血管生成转录途径的体内调节器。第二个目标集中在骨前体细胞增殖,这是一个通常先于骨基质和矿物质形成的事件。目前的模型将细胞增殖描述为骨科生物材料从头骨形成的关键。然而,这种生物学反应的体内时间、幅度和特异性仍不清楚。使用一种新的成像为基础的增殖测量,我们建议测试,在体内环境中,生物材料表面是否引起差异增殖反应的原代人骨前体细胞。我们的第三个目标将提供原理证明,即酶促骨细胞活性可以使用小成像分子和临床相关的成像范例在活的完整骨中直接检测和测量。总之,所提出的研究将作为未来实验的模型,这些实验利用成像技术以及传统的体外方法来分析骨形成途径。公共卫生相关性:这个跨学科的项目计划研究在生理条件下控制活骨成骨的生物学。为了开始建立体内成骨转录、细胞增殖和骨细胞活性的相关性,我们的三个目标将分别介绍和验证转基因成像报告基因小鼠、基于成像的增殖测量和创新的小成像分子策略。此外,我们将利用转基因动物来研究骨愈合过程中的血管生成转录,并利用体内增殖测量来研究与从头骨形成相关的生长反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philipp Mayer-Kuckuk其他文献
Philipp Mayer-Kuckuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philipp Mayer-Kuckuk', 18)}}的其他基金
相似海外基金
The role of tissue nonspecific alkaline phosphatase in brain endothelial cell homeostasis
组织非特异性碱性磷酸酶在脑内皮细胞稳态中的作用
- 批准号:
10220574 - 财政年份:2021
- 资助金额:
$ 38.72万 - 项目类别:
Post-Transcriptional Processing of the Small Intestinal Alkaline Phosphatase in the Postnatal Developing Pig
产后发育猪小肠碱性磷酸酶的转录后加工
- 批准号:
RGPIN-2016-05827 - 财政年份:2021
- 资助金额:
$ 38.72万 - 项目类别:
Discovery Grants Program - Individual
The role of tissue nonspecific alkaline phosphatase in brain endothelial cell homeostasis
组织非特异性碱性磷酸酶在脑内皮细胞稳态中的作用
- 批准号:
10413987 - 财政年份:2021
- 资助金额:
$ 38.72万 - 项目类别:
The role of tissue nonspecific alkaline phosphatase in brain endothelial cell homeostasis
组织非特异性碱性磷酸酶在脑内皮细胞稳态中的作用
- 批准号:
10601067 - 财政年份:2021
- 资助金额:
$ 38.72万 - 项目类别:
Dietary induction of intestinal alkaline phosphatase intended to detoxify endotoxin and analysis of its mechanism of action.
膳食诱导肠道碱性磷酸酶解毒内毒素及其作用机制分析。
- 批准号:
20K05936 - 财政年份:2020
- 资助金额:
$ 38.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Selective targeting of human alkaline phosphatase isozymes
选择性靶向人碱性磷酸酶同工酶
- 批准号:
10359823 - 财政年份:2020
- 资助金额:
$ 38.72万 - 项目类别:
Functional analysis of alkaline phosphatase, a stem cell marker, using human deciduous dental pulp cells derived from the patient with Hypophosphatasia (HPP)
使用源自低磷酸酯酶症 (HPP) 患者的人乳牙牙髓细胞对干细胞标记物碱性磷酸酶进行功能分析
- 批准号:
20K10210 - 财政年份:2020
- 资助金额:
$ 38.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the role of tissue non-specific alkaline phosphatase in osteogenesis for the therapy of hypophosphatasia.
了解组织非特异性碱性磷酸酶在成骨作用中的作用,以治疗低磷酸酯酶症。
- 批准号:
20K16894 - 财政年份:2020
- 资助金额:
$ 38.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Selective targeting of human alkaline phosphatase isozymes
选择性靶向人碱性磷酸酶同工酶
- 批准号:
10117265 - 财政年份:2020
- 资助金额:
$ 38.72万 - 项目类别:
Post-Transcriptional Processing of the Small Intestinal Alkaline Phosphatase in the Postnatal Developing Pig
产后发育猪小肠碱性磷酸酶的转录后加工
- 批准号:
RGPIN-2016-05827 - 财政年份:2020
- 资助金额:
$ 38.72万 - 项目类别:
Discovery Grants Program - Individual