Pathway Prediction and Assessment Integrating Multiple Evidence Types
整合多种证据类型的路径预测和评估
基本信息
- 批准号:7685518
- 负责人:
- 金额:$ 17.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2011-09-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAntimalarialsBacteriaBiochemical PathwayBiologicalComputer softwareCoupledDataData SetDatabasesDevelopmentEngineeringEnzymesEscherichiaEscherichia coliFutureGene ExpressionGenesGenomeGoldGovernmentKnowledgeLaboratory ResearchLeftMachine LearningMetabolicMetabolic PathwayMetabolismMethodsModelingMolecular ProfilingMouse-ear CressOrganismPathologicPathway interactionsPharmaceutical PreparationsPhaseProbabilityProdrugsPropertyProteinsReactionRelative (related person)ResearchResearch InstituteResearch PersonnelScientistSeriesTechniquesTrainingValidationYeastsbasedesigngenome databasemetabolomicsnew therapeutic targetnovelpathway toolsprogramsreconstruction
项目摘要
DESCRIPTION (provided by applicant):
Metabolic pathway databases provide a biological framework in which relationships among an organism's genes may be revealed. This context can be exploited to boost the accuracy of genome annotation, to discover new targets for therapeutics, or to engineer metabolic pathways in bacteria to produce a historically expensive drug cheaply and quickly. But, knowledge of metabolism in ill-characterized species is limited and dependent on computational predictions of pathways. Our ultimate target is to develop methods for the prediction of novel metabolic pathways in any organism, coupled with robust assessment of the validity of any predicted pathway. We hypothesize that integrating evidence from multiple levels of an organism's metabolic network - from the fit of a pathway within the network to evolutionary relationships between pathways - will allow us to assess pathway validity and to predict novel metabolic pathways. We have successfully applied machine learning methods to the problem of identifying missing enzymes in metabolic pathways and believe similar methods will prove fruitful in this application. Our preliminary studies have identified several properties of predicted metabolic pathways that differ between sets of true positive pathway predictions (i.e., pathways known to occur in an organism) and sets of false positive pathway predictions. We will expand on these features and develop methods to address the following specific aims:
1) Identify features that are informative in distinguishing between correct and incorrect pathway predictions in computationally-generated pathway/genome databases based on predictions for highly-curated organisms (e.g., Escherichia coli and Arabidopsis thaliana).
2) Develop methods for computing the probability that a pathway is correctly predicted. Informative features identified in Specific Aim #1 will be integrated into a classifier that will compute the probability that a predicted pathway is correct given the associated evidence.
3) Extend the Pathologic program (the Pathway Tools algorithm used to infer the metabolic network of an organism) to predict alternate, previously unknown pathways in an organism. We will search the MetaCyc reaction space (comprising almost 6000 reactions) for novel subpathways, explicitly constraining our search using organism-specific evidence (i.e., homology, experimental evidence, etc.) at each step.
描述(由申请人提供):
代谢途径数据库提供了一个生物学框架,其中可以揭示生物体基因之间的关系。这种背景可以用来提高基因组注释的准确性,发现新的治疗靶点,或者设计细菌中的代谢途径,以廉价快速地生产出历史上昂贵的药物。但是,在病态特征的物种的代谢知识是有限的,并依赖于计算预测的途径。我们的最终目标是开发预测任何生物体中新代谢途径的方法,并对任何预测途径的有效性进行可靠的评估。我们假设,整合来自生物体代谢网络多个层次的证据-从网络内途径的拟合到途径之间的进化关系-将使我们能够评估途径的有效性并预测新的代谢途径。我们已经成功地将机器学习方法应用于识别代谢途径中缺失的酶的问题,并相信类似的方法将在此应用中证明是富有成效的。我们的初步研究已经确定了预测的代谢途径的几个性质,这些性质在真阳性途径预测之间是不同的(即,已知发生在生物体中的途径)和假阳性途径预测集。我们将扩展这些功能,并开发方法来解决以下具体目标:
1)基于对高度策划的生物体的预测,在计算生成的途径/基因组数据库中识别在区分正确和不正确的途径预测方面提供信息的特征(例如,大肠杆菌和拟南芥)。
2)开发计算路径被正确预测的概率的方法。在特定目标#1中识别的信息特征将被整合到分类器中,该分类器将在给定相关证据的情况下计算预测途径正确的概率。
3)扩展Pathologic程序(用于推断生物体代谢网络的Pathway Tools算法),以预测生物体中先前未知的替代途径。我们将在MetaCyc反应空间(包括近6000个反应)中搜索新的子途径,使用生物体特异性证据(即,同源性、实验证据等)在每一步。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning methods for metabolic pathway prediction.
- DOI:10.1186/1471-2105-11-15
- 发表时间:2010-01-08
- 期刊:
- 影响因子:3
- 作者:Dale JM;Popescu L;Karp PD
- 通讯作者:Karp PD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER D KARP其他文献
PETER D KARP的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER D KARP', 18)}}的其他基金
Knowledgebase of Escherichia coli Genome and Metabolism
大肠杆菌基因组和代谢知识库
- 批准号:
10716050 - 财政年份:2023
- 资助金额:
$ 17.56万 - 项目类别:
Development and Support of the Pathway Tools Software
Pathway Tools 软件的开发和支持
- 批准号:
10404662 - 财政年份:2021
- 资助金额:
$ 17.56万 - 项目类别:
Development and Support of the Pathway Tools Software
Pathway Tools 软件的开发和支持
- 批准号:
10220624 - 财政年份:2021
- 资助金额:
$ 17.56万 - 项目类别:
Development and Support of the Pathway Tools Software
Pathway Tools 软件的开发和支持
- 批准号:
10609063 - 财政年份:2021
- 资助金额:
$ 17.56万 - 项目类别:
Development and Support of the Pathway Tools Software
Pathway Tools 软件的开发和支持
- 批准号:
7902995 - 财政年份:2009
- 资助金额:
$ 17.56万 - 项目类别:
The MetaCyc and BioCyc Pathway/Genome Databases [SRI Proposal ECU 10-626]
MetaCyc 和 BioCyc 通路/基因组数据库 [SRI 提案 ECU 10-626]
- 批准号:
8109015 - 财政年份:2007
- 资助金额:
$ 17.56万 - 项目类别:
The MetaCyc and BioCyc Pathway/Genome Databases
MetaCyc 和 BioCyc 通路/基因组数据库
- 批准号:
7810709 - 财政年份:2007
- 资助金额:
$ 17.56万 - 项目类别:
The MetaCyc and BioCyc Pathway/Genome Databases
MetaCyc 和 BioCyc 通路/基因组数据库
- 批准号:
7450885 - 财政年份:2007
- 资助金额:
$ 17.56万 - 项目类别:
The MetaCyc and BioCyc Pathway/Genome Databases [SRI Proposal ECU 10-626]
MetaCyc 和 BioCyc 通路/基因组数据库 [SRI 提案 ECU 10-626]
- 批准号:
8298991 - 财政年份:2007
- 资助金额:
$ 17.56万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Continuing Grant














{{item.name}}会员




