Transcription Factor-DNA Interactions: Structural Classification and Prediction

转录因子-DNA 相互作用:结构分类和预测

基本信息

项目摘要

DESCRIPTION (provided by applicant): Human diseases often arise from excessive or deficient transcription of particular genes in an organism. Proteins known as transcription factors (TF) regulate transcription of a gene through binding specific sites on DNA known as TF binding sites (TFBS). One of the strategies used to study how TFs recognize TFBSs is through the development of computer algorithms for predicting TFBSs in genomic sequence. Most algorithms apply position-specific weight matrices (PWM) obtained from DNA sequences of TFBSs. However, for more than 3,000 TFs that have been identified and predicted in the human genome, PWMs were built for only 300 TFs. To apply the prediction methods to TFs with unknown PWMs, two approaches are applied. The first one proposes generating PWMs for families of TFs sharing similar DNA-binding domains. However, TFs from the same family, as designated in the existing classifications of TFs, often do not recognize the same DNA sequences. Hence, there is an appeal to a new classification of TFs able to drive the prediction of TFBSs. The second approach is to build PWMs on three- dimensional (3D) structures of TF-DNA complexes. As our preliminary results indicate, this approach can also be applied to families of TFs a PWM can be obtained for a TF family through alignment of TFBS sequences and 3D structures of TF-DNA complexes. The performance of such generated PWMs for TF families is suggested to be used for validation of the classification of TFs. The goal of the proposal is to study how similarity in sequences and structures of DNA-binding domains of TFs relates to the similarity of TFBSs. The research will focus on TFs for which at least one 3D structure of TF-DNA complex or its close homolog is available. The goal will be attained through the following specific aims: (1) Develop an automatic classification of DNA-binding domains of TFs based on similarity of sequences and structures of TFs and TFBSs; (2) Develop a structure-based approach to the prediction of TFBSs for families of TFs; and (3) Disseminate the results by means of a web resource providing access to the classification and prediction methods in the form of queries and web tools. The results of the study will be valuable for annotating TFs and regulatory regions in genomes of human and other organisms. They will also facilitate deciphering of gene regulatory networks and designing drugs for treatment of diseases associated with inadequate gene regulation. The results of the proposed study will facilitate annotating transcription factors and regulatory regions in genomes of human and other organisms. This information is significant for designing drugs for treatment of diseases associated with inadequate gene regulation.
描述(由申请人提供):

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Vladimirovna Ponomarenko其他文献

Julia Vladimirovna Ponomarenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Vladimirovna Ponomarenko', 18)}}的其他基金

Transcription Factor-DNA Interactions: Structural Classification and Prediction
转录因子-DNA 相互作用:结构分类和预测
  • 批准号:
    8053598
  • 财政年份:
    2010
  • 资助金额:
    $ 23.18万
  • 项目类别:
Transcription Factor-DNA Interactions: Structural Classification and Prediction
转录因子-DNA 相互作用:结构分类和预测
  • 批准号:
    7895753
  • 财政年份:
    2008
  • 资助金额:
    $ 23.18万
  • 项目类别:
Transcription Factor-DNA Interactions: Structural Classification and Prediction
转录因子-DNA 相互作用:结构分类和预测
  • 批准号:
    7507329
  • 财政年份:
    2008
  • 资助金额:
    $ 23.18万
  • 项目类别:
Transcription Factor-DNA Interactions: Structural Classification and Prediction
转录因子-DNA 相互作用:结构分类和预测
  • 批准号:
    8106402
  • 财政年份:
    2008
  • 资助金额:
    $ 23.18万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了