Advanced Software for Enabling Quantitative 3D Stress Echocardiography
用于实现定量 3D 应力超声心动图的高级软件
基本信息
- 批准号:7611803
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-25 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerated PhaseAccelerationAdoptedAlgorithmsCardiacCardiologyCardiovascular DiseasesCardiovascular systemCause of DeathClinicalClinical ResearchClinical TrialsComplexComputer softwareConsultationsCoronary ArteriosclerosisDataData SetDevelopmentDiagnosisEchocardiographyEquipmentGenerationsGoalsHealth Care CostsHourImageImage AnalysisImageryLeftLeft ventricular structureLegal patentLifeMeasurementMotionMyocardialMyocardial IschemiaMyocardiumPatientsPersonal ComputersPhasePhysiciansPhysiologicalPreparationProceduresPublic HealthReadingReportingResearchScanningSmall Business Technology Transfer ResearchSolutionsSpeedStressStress EchocardiographyTechnologyTestingThree-Dimensional ImageTimeUltrasonographyUnited StatesVentricularbasecomputerized data processingdiagnostic accuracyheart visualizationimage registrationimprovedmeetingsnovelnovel diagnosticstooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): Through more than 5 years of research, we have developed a new cardiovascular procedure termed quantitative three-dimensional (3D) stress echocardiography (echo). Because of exceedingly high computational demands, the procedure remains clinically nonviable despite our mature academic research. The objective of this STTR project is to remove the computation bottleneck and thus enable routine use of quantitative 3D stress echo. This new stress procedure overcomes many of the limitations of conventional stress echo by utilizing more powerful real-time 3D (RT3D) ultrasound instead of standard 2-dimensional (2D) ultrasound. The new 3D procedure allows a clinician to make diagnoses through comprehensive visualization of the heart and quantitative data on normal or abnormal left ventricular wall motion. Volumetric data gathered by RT3D ultrasound are the basis for these novel diagnostic capabilities. We have reported previously the ability: to (a) correct for the well-documented problem of misaligned views; (b) visualize any (dynamic) cross-section through the aligned pre- and post-stress data sets interactively on a personal computer; and (c) automatically identify the left ventricular myocardium to compute local, segment-wise measurements. These advanced image analysis algorithms also require up to an hour's execution time. We propose at least a 10-fold acceleration of these novel algorithms (net execution time of 5 min or less) by re- implementing those in graphics processor units (GPUs), which are now widely available and are powerful enough to solve complex computational tasks. Our specific aims for the Phase I project, therefore, are to: (1) develop GPU-accelerated implementation of pre- and post-stress RT3D ultrasound image registration; and (2) develop GPU-accelerated implementation of myocardial segmentation in RT3D ultrasound images. Efficient data processing, a prerequisite for clinical viability, will justify advancing to Phase II, in which we will (1) develop a complete, GPU-based software suite for visualizing and quantitatively interpreting pre- and post-stress RT3D ultrasound images; and (2) conduct multicenter clinical trials. As hundreds of cardiology departments look to adopt RT3D ultrasound, our timely research will accelerate the phasing in of quantitative 3D stress echo and its resulting benefits to millions with CAD. PUBLIC HEALTH: Three-dimensional (3D) acquisition is a new development in ultrasound imaging. We have suggested a new stress procedure based on 3D ultrasound and shown it to be more accurate than the conventional procedure. The new procedure, despite its benefits, remains limited to research. We propose converting our academic research into clinically and commercially viable solutions that will allow us to perform the new 3D stress procedure routinely. Because millions of patients suffer from cardiovascular disease, even a modest 1% increase in diagnostic accuracy by the new procedure could save many lives and reduce health care costs.
描述(由申请人提供):通过5年多的研究,我们开发了一种新的心血管程序,称为定量三维(3D)负荷超声心动图(回波)。由于非常高的计算要求,尽管我们的学术研究已经成熟,但该程序在临床上仍然不可行。该STTR项目的目标是消除计算瓶颈,从而实现定量3D应力回波的常规使用。这种新的应力程序通过利用更强大的实时3D(RT 3D)超声而不是标准的二维(2D)超声,克服了传统应力回波的许多局限性。新的3D程序允许临床医生通过心脏的全面可视化和正常或异常左心室壁运动的定量数据进行诊断。RT 3D超声收集的体积数据是这些新诊断功能的基础。我们之前已经报道了以下能力:(a)纠正有据可查的未对齐视图问题;(B)在个人计算机上交互式地通过对齐的应力前和应力后数据集可视化任何(动态)横截面;以及(c)自动识别左心室心肌以计算局部、分段测量。这些先进的图像分析算法也需要长达一个小时的执行时间。我们提出了至少10倍的加速这些新的算法(净执行时间为5分钟或更少),通过重新实现那些在图形处理器单元(GPU),这是现在广泛使用,并强大到足以解决复杂的计算任务。因此,我们第一阶段项目的具体目标是:(1)开发GPU加速的应力前和应力后RT 3D超声图像配准实现;(2)开发GPU加速的RT 3D超声图像心肌分割实现。有效的数据处理是临床可行性的先决条件,将证明推进到第二阶段是合理的,在第二阶段,我们将(1)开发一个完整的基于GPU的软件套件,用于可视化和定量解释应力前后的RT 3D超声图像;(2)进行多中心临床试验。随着数百个心脏科希望采用RT 3D超声,我们及时的研究将加速定量3D应力回波的逐步实现,并为数百万CAD患者带来好处。公共卫生:三维(3D)采集是超声成像的新发展。我们提出了一种基于3D超声的新的应力程序,并表明它比传统程序更准确。新的程序,尽管它的好处,仍然局限于研究。我们建议将我们的学术研究转化为临床和商业上可行的解决方案,使我们能够定期执行新的3D应力程序。由于数以百万计的患者患有心血管疾病,即使新程序的诊断准确性仅提高1%,也可以挽救许多生命并降低医疗成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Lester Plishker其他文献
William Lester Plishker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Prediction of Microstructure and Mechanical Property of Multiphase Steel using GPU-accelerated Phase-Field Method
使用 GPU 加速相场法预测多相钢的微观结构和力学性能
- 批准号:
23760088 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Young Scientists (B)