Exercise Stress Cardiac Magnetic Resonance
运动压力心脏磁共振
基本信息
- 批准号:7745974
- 负责人:
- 金额:$ 37.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-25 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcousticsAlgorithmsAmericanBody WeightCardiacCardiovascular DiseasesCardiovascular systemComputer softwareCoronary ArteriosclerosisDefectDetectionDevelopmentDiagnosisDiagnosticDiagnostic testsDiseaseEarly DiagnosisEchocardiographyElectrocardiogramEngineeringEnvironmentEquipmentEvaluationEventExerciseExercise stress testExertionFatigueGoalsGuidelinesHeartHeart DiseasesHeart RateImageImaging TechniquesInvestigationIonizing radiationIschemiaLeadLung diseasesMagnetic ResonanceMagnetic Resonance ImagingMorphologic artifactsMotionMyocardial perfusionNoiseNuclearObesityPatientsPerformancePerfusionPhasePhotonsPhysiologic pulseProtocols documentationRadiationResearchResolutionSafetySalesSliceSocietiesStagingStressStress TestsSystemTechnologyTestingTimeUltrasonographyValidationattenuationbasecohortcommercializationdesigndesign and constructioneffective therapyheart imagingimage processingimaging modalityimprovedinnovationinsightmagnetic fieldmeetingsnew technologyolder patientprototypepublic health relevanceresponserib bone structuresoft tissuetechnology developmenttomographytooltreatment strategy
项目摘要
DESCRIPTION (provided by applicant): Exercise stress testing with imaging is widely used to detect heart disease, but current stress imaging systems suffer from false positives that may lead to unnecessary invasive testing, and false negatives that may miss disease detection until a serious event occurs. Thus, consistently accurate stress imaging remains an important target for technology development. Cardiac magnetic resonance (CMR) provides superior imaging of the heart without ionizing radiation, but technology has not been developed to allow CMR immediately following maximal exercise stress. A revolutionary change to the current landscape of cardiac stress testing could result by adding exercise testing to CMR, thus establishing a "one-stop" imaging modality for accurately assessing heart disease in a single examination. This project focuses on the research and commercialization of an MRI-based system for enhanced exercise stress testing for patients with suspected cardiovascular disease. The key enabling technology is an innovative non-ferromagnetic treadmill that enables convenient placement immediately adjacent to the MRI machine. Standard treadmills would have to be placed far from the MRI magnet outside the MRI room, leading to critical delays between exercise and image acquisition, as well as safety concerns for compromised patients who must, in a fatigued and stressed state, traverse the distance from the treadmill to the MRI table. Our innovative design will overcome these problems and furthermore, enable image acquisition immediately post-exercise. The resulting high resolution images are expected to be superior to nuclear single photon emission tomography (SPECT) and ultrasound, and clearly show stress wall motion, stress perfusion, and viability. The design, implementation, and feasibility testing of this new technology by a coordinated team of engineers and clinicians (Phase I), followed by a multi-center investigation showing improved accuracy over existing stress imaging methods (Phase II) is expected to lead to a sizeable commercial opportunity for the manufacture and sale of MRI stress testing equipment. Phase I of this project will be accomplished by meeting the following specific aims: " Design and construct an MRI-compatible treadmill capable of performing the standard Bruce stress test protocol immediately adjacent to MRI systems up to 3T field strength. " Demonstrate feasibility of treadmill exercise stress MRI of cardiac function and perfusion in patients with suspected coronary artery disease. Successful achievement of the aims of this Phase I project will lead to Phase II multi-center validation of this new stress imaging modality, including direct comparison with nuclear SPECT. The combination of exercise stress testing and CMR could greatly enhance our understanding of CAD, and enable earlier diagnosis and more effective treatment strategies. PUBLIC HEALTH RELEVANCE: Exercise testing and magnetic resonance imaging (MRI) have independently shown tremendous utility in the diagnosis and treatment of heart disease. Exercise stress testing provides important information about the heart's response to physical exertion, and MRI is a non-invasive imaging method that has many advantages over other imaging techniques. This project develops and evaluates the new equipment needed to combine exercise testing with MRI, and is expected to result in an improved test for the diagnosis of heart disease.
描述(申请人提供):运动负荷试验和成像被广泛用于检测心脏病,但目前的负荷成像系统存在可能导致不必要的侵入性测试的假阳性,以及可能在严重事件发生之前错过疾病检测的假阴性。因此,始终准确的应力成像仍然是技术发展的重要目标。心脏磁共振(CMR)在没有电离辐射的情况下提供了卓越的心脏成像,但还没有开发出在最大运动应激后立即进行CMR的技术。通过将运动测试添加到CMR中,可以对目前的心脏压力测试产生革命性的变化,从而建立一种在一次检查中准确评估心脏病的“一站式”成像模式。该项目的重点是研究和商业化一种基于磁共振成像的系统,用于为疑似心血管疾病患者加强运动负荷测试。关键的支持技术是一种创新的非铁磁跑步机,使其能够方便地放置在紧挨着核磁共振机器的位置。标准的跑步机必须放在远离核磁共振成像磁铁的地方,这会导致锻炼和图像获取之间的严重延误,并对受到影响的患者产生安全担忧,这些患者必须在疲惫和紧张的状态下,从跑步机到核磁共振检查台之间的距离。我们的创新设计将克服这些问题,此外,还可以在运动后立即获取图像。由此得到的高分辨率图像有望优于核单光子发射断层扫描(SPECT)和超声,并清楚地显示应力壁运动、应力灌流和生存能力。由工程师和临床医生组成的协调团队对这项新技术进行设计、实施和可行性测试(第一阶段),然后进行一项多中心调查,显示出比现有应力成像方法更准确的结果(第二阶段),预计将为MRI压力测试设备的制造和销售带来巨大的商业机会。该项目的第一阶段将通过满足以下具体目标来完成:“设计和建造一台与MRI兼容的跑步机,能够执行标准的Bruce负荷测试协议,紧邻高达3T场强的MRI系统。”对可疑冠心病患者进行跑台运动负荷核磁共振心功能和血流灌注检测的可行性。这一第一阶段项目目标的成功实现将导致这一新的应力成像模式的第二阶段多中心验证,包括与核SPECT的直接比较。运动负荷试验和CMR的结合可以极大地提高我们对CAD的认识,使我们能够更早地诊断和更有效的治疗策略。与公众健康相关:运动测试和核磁共振成像(MRI)在心脏病的诊断和治疗中显示出巨大的实用价值。运动负荷测试提供了有关心脏对体力消耗反应的重要信息,而磁共振成像是一种非侵入性成像方法,与其他成像技术相比具有许多优势。该项目开发和评估了将运动测试与核磁共振相结合所需的新设备,并有望改进心脏病诊断的测试。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-time cine and myocardial perfusion with treadmill exercise stress cardiovascular magnetic resonance in patients referred for stress SPECT.
- DOI:10.1186/1532-429x-12-41
- 发表时间:2010-07-12
- 期刊:
- 影响因子:0
- 作者:Raman SV;Dickerson JA;Jekic M;Foster EL;Pennell ML;McCarthy B;Simonetti OP
- 通讯作者:Simonetti OP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Orlando Paul Simonetti其他文献
PO-646-08 HETEROGENEOUS TRANSMURAL FIBROSIS REMODELING CREATES ARRHYTHMOGENIC SUBSTRATES IN A CANINE MODEL OF PERSISTENT ATRIAL FIBRILLATION
- DOI:
10.1016/j.hrthm.2022.03.197 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Anuradha Kalyanasundaram;Uma Mylavarapu;Ning Li;Brian Hansen;Sahil Khambhampati;Peter J. Mohler;Orlando Paul Simonetti;John D. Hummel;Vadim V. Fedorov - 通讯作者:
Vadim V. Fedorov
Optimal design of gradient waveforms for magnetic resonance imaging
- DOI:
10.1007/bf02368620 - 发表时间:
1992-11-01 - 期刊:
- 影响因子:5.400
- 作者:
Orlando Paul Simonetti;Jeffrey L. Duerk - 通讯作者:
Jeffrey L. Duerk
Orlando Paul Simonetti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Orlando Paul Simonetti', 18)}}的其他基金
Development and validation of cardiovascular MRI techniques on a low-field, ultra-wide bore system to assess patients with severe obesity
在低场、超宽口径系统上开发和验证心血管 MRI 技术,以评估严重肥胖患者
- 批准号:
10569549 - 财政年份:2022
- 资助金额:
$ 37.01万 - 项目类别:
Development and validation of cardiovascular MRI techniques on a low-field, ultra-wide bore system to assess patients with severe obesity
在低场、超宽孔径系统上开发和验证心血管 MRI 技术,以评估严重肥胖患者
- 批准号:
10357292 - 财政年份:2022
- 资助金额:
$ 37.01万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 37.01万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 37.01万 - 项目类别:
Standard Grant