Radiation Hard X-Ray Detector for Image-Guided Proton Beam Cancer Therapy
用于图像引导质子束癌症治疗的辐射硬 X 射线探测器
基本信息
- 批准号:7670035
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-07 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdvanced DevelopmentAdverse effectsAwardCancerousCardiovascular systemCerealsDefectDepositionDetectionDevelopmentDevicesDiagnostic radiologic examinationDiamondDoseElectronicsElementsExposure toFilmFundingGeneral HospitalsGenerationsGoalsHardnessImageImmobilizationIn SituIndustryInvestigationLeadLicensingMainstreamingMarketingMassachusettsMedicalMedical ElectronicsMilitary PersonnelMotionMovementNeutronsNoiseOrganPatientsPerformancePhasePositioning AttributePricePropertyProtonsQualifyingRadiationRadiation ToleranceRadiation therapyRecording of previous eventsRecoveryResearchResistanceRespirationRoentgen RaysSamplingSemiconductorsServicesSiliconSmall Business Innovation Research GrantSpace ExplorationsStructureSystemTechnologyTestingTimeTissuesTranslatingUniversitiesWorkbasecancer therapycommercializationcostdesigndetectordigitalexperiencehigh energy particleimaging detectorirradiationmedical schoolsmembermillimeterparticle beamproton beamprototypepublic health relevanceradiation detectortooltumortwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): Proton beam cancer therapy is fast becoming a mainstream technology in the US, offering the potential for successful cancer treatment with minimum damage to adjacent healthy tissue. The main advantage of proton beam therapy is its ability to target small tissue volumes within a patient, with very high precision, potentially down to fractions of a millimeter. Precisions far greater than can be achieved with x-ray radiotherapy. The reduced damage to healthy tissue translates directly to fewer side effects and shorter patient recovery times. Achieving the maximum benefit of proton beam therapy requires an image-guided approach, since the targeting accuracy of proton beam therapy is easily compromised by patient motion, either as a result of insufficient immobilization or the inevitable motion due to patient respiration or cardiovascular action. Present practice for proton beam cancer therapy does not use an image-guided approach. Typically, digital x-ray radiography is done prior to proton beam irradiation, (usually from two orthogonal views), to construct a 3-D x-ray image of the tumor for targeting. This x-ray imaging must be done off-line, with the proton beam switched off, since proton irradiation creates a significant neutron flux, which rapidly destroys silicon-based x-ray detector panels. The actual proton beam treatment is typically delayed, until the x-ray detectors are retracted behind shielding. In this SBIR effort, Structured Materials Industries, Inc., (SMI) www.structuredmaterials.com, will develop an x-ray imaging system, which is highly resistant to damage by particle beam radiation such as protons and neutrons. The proposed x-ray detector system can be used directly prior to, or even in-situ during proton beam cancer therapy, enabling cancer treatment options that take maximum advantage of the benefits of proton beams. Our technical approach will use thin films of man-made diamond, as the active semiconductor material in the x-ray detector, instead of present technology silicon. Diamond has a number of advantages for use in radiation detectors, including high-sensitivity, low-noise and excellent radiation hardness, as will be detailed further in this proposal. Recent developments in technology to produce synthetic diamond are now making this material available and affordable for electronic applications.
PUBLIC HEALTH RELEVANCE: The proposed x-ray imaging system will enable high precision dose delivery, during proton beam cancer therapy. This increased accuracy will enable destruction of cancerous tissue, with minimal damage to adjacent healthy tissue, even with the inevitable organ movement due to patient respiration and cardiovascular action. Greater beam position accuracy will enable treatment of advanced tumors, small tumors and tumors intimately adjacent to healthy organs, as well as lead to shorten recovery times.
描述(由申请人提供):质子束癌症治疗正在迅速成为美国的主流技术,提供了成功治疗癌症的潜力,同时对邻近健康组织的损害最小。质子束治疗的主要优点是能够以非常高的精度(可能低至几分之一毫米)瞄准患者体内的小组织体积。精度远远高于 X 射线放射治疗所能达到的精度。对健康组织损伤的减少直接意味着副作用的减少和患者康复时间的缩短。要实现质子束治疗的最大益处,需要采用图像引导方法,因为质子束治疗的靶向准确性很容易受到患者运动的影响,无论是由于固定不足还是由于患者呼吸或心血管活动导致的不可避免的运动。目前质子束癌症治疗的实践不使用图像引导方法。通常,数字 X 射线照相在质子束照射之前进行(通常来自两个正交视图),以构建肿瘤的 3D X 射线图像以用于靶向。这种 X 射线成像必须在质子束关闭的情况下离线完成,因为质子照射会产生大量的中子通量,从而迅速破坏硅基 X 射线探测器面板。实际的质子束治疗通常会延迟,直到 X 射线探测器缩回到屏蔽后面。在这项 SBIR 项目中,Structured Materials Industries, Inc. (SMI) www.structedmaterials.com 将开发一种 X 射线成像系统,该系统对质子和中子等粒子束辐射具有很强的抵抗力。所提出的 X 射线探测器系统可以在质子束癌症治疗之前直接使用,甚至可以在质子束癌症治疗期间原位使用,从而使癌症治疗方案能够最大限度地利用质子束的优势。我们的技术方法将使用人造金刚石薄膜作为 X 射线探测器中的活性半导体材料,而不是现有技术的硅。金刚石用于辐射探测器具有许多优点,包括高灵敏度、低噪声和出色的辐射硬度,本提案将进一步详细介绍这一点。合成金刚石生产技术的最新发展使得这种材料在电子应用中变得可用且经济实惠。
公共健康相关性:拟议的 X 射线成像系统将在质子束癌症治疗期间实现高精度剂量输送。这种提高的准确性将能够破坏癌组织,对邻近健康组织的损害最小,即使由于患者呼吸和心血管活动而不可避免地发生器官移动。更高的光束位置精度将能够治疗晚期肿瘤、小肿瘤和与健康器官紧密相邻的肿瘤,并缩短恢复时间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nick M. Sbrockey其他文献
Annealing behavior and electrical properties of atomic layer deposited PbTiO<sub>3</sub> and PZT films
- DOI:
10.1016/j.jcrysgro.2018.04.004 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:
- 作者:
Jung In Yang;Aaron Welsh;Nick M. Sbrockey;Gary S. Tompa;Ronald G. Polcawich;Daniel M. Potrepka;Susan Trolier-McKinstry - 通讯作者:
Susan Trolier-McKinstry
Nick M. Sbrockey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别: