Autonomous Electromechanical Gas Detection Microsystem for Mine Safety

用于矿山安全的自主机电气体检测微系统

基本信息

  • 批准号:
    8300687
  • 负责人:
  • 金额:
    $ 47.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Autonomous Electrochemical Gas Detection Microsystem for Mine Safety A. Mason (Michigan State) and X. Zeng (Oakland) Despite continued safety improvements and increased regulations, underground mines remain a very dangerous work environment, as evident from recent disasters at the Sago (2006), Darby (2006), and Crandall Canyon (2007) mines. As recommended by the Mine Safety Technology and Training Commission, new, cost- effective technologies are needed to enhance monitoring within mines. We propose to develop key sensor, instrumentation and data analysis technologies that will be integrated to form a miniaturized intelligent electrochemical gas analysis system (iEGAS) tailored to the needs and challenges of mine safety applications. Major innovations in diverse technical areas will be synergistically combined within the following specific aims: 1) Develop and characterize a miniaturized electrochemical sensor array for detection and quantification of multiple mine gases, 2) Design and optimize compact electrochemical instrumentation electronics and intelligent algorithms for autonomous operation, 3) Integrate and characterize a model multi- gas electrochemical microsystem for mine safety monitoring and hazardous condition prediction. Through an innovative electrochemical sensor array approach, room-temperature ionic liquids and conductive polymer membranes will be developed for detection of multiple mine gases. An innovative instrumentation chip will implement multiple electrochemical measurement techniques to enable a very compact, low power microsystem implementation of the iEGAS system. New, highly efficient sensor array data analysis algorithms will enable concentrations of specific gases to be accurately measured within a mixed-gas environment and provide pattern recognition to generate information critical to mine safety decision making. The proposed microsystem offers significant advantages over existing gas sensors. It will measure all gases linked to fires and explosions (CH4, CO, CO2, O2) as well as hazardous exhaust gases (NO, NO2, SO2). It will intelligently analyze sensor data to predict hazardous conditions, report alerts and aid escape route planning. The autonomous iEGAS system can be deployed with miners or at fixed locations within a mine for long-term monitoring without user input or training. It will be inexpensive, ultra compact and lightweight, easily carried by miners and rescue teams. It will utilize a standard interface to communicate with existing mine infrastructure or with wireless mine communication handsets to realize a highly distributed, mobile, multi-gas monitoring network. The robust sensor platform is inherently resistant to vibration, smoke, moisture, and other common mine interferents, and sensors will be internally calibrated for variable environmental conditions (temperature, humidity). An operational model of the proposed iEGAS system will be implemented and characterized in a laboratory where gas concentrations and environmental parameters can be accurately controlled to mimic the range of conditions within underground mines. The multidisciplinary team of investigators will consult with mine safety experts throughout the project to ensure the developed technologies meet mining industry needs.
项目摘要 用于矿山安全的自主电化学气体检测微系统 A.梅森(密歇根州)和X。曾(奥克兰) 尽管安全状况不断改善,监管力度不断加大,但地下矿山仍然是一个非常危险的行业。 危险的工作环境,最近发生在萨戈(2006年)、达比(2006年)和克兰德尔的灾难就是明证 峡谷(2007)地雷。根据矿山安全技术和培训委员会的建议, 需要有效的技术来加强矿井内的监测。我们建议开发关键传感器, 仪器仪表和数据分析技术,将被集成,形成一个小型化的智能 电化学气体分析系统(iEGAS),专为满足矿山安全的需求和挑战而设计 应用.不同技术领域的重大创新将在以下方面协同结合: 具体目的:1)开发和表征用于检测的小型化电化学传感器阵列, 多种矿井气体的量化,2)设计和优化紧凑的电化学仪器 电子和智能算法的自主操作,3)集成和表征模型多, 用于矿井安全监测和危险状态预测的气体电化学微系统。通过 创新电化学传感器阵列方法、室温离子液体和导电聚合物 将开发用于检测多种矿井气体的膜。一种创新的仪器芯片将 实施多种电化学测量技术以实现非常紧凑、低功率 iEGAS系统的微系统实现。新型高效传感器阵列数据分析算法 将能够在混合气体环境中精确测量特定气体的浓度, 提供模式识别以产生对矿井安全决策至关重要的信息。拟议 微系统提供了比现有的气体传感器显著的优点。它将测量所有与火灾有关的气体 和爆炸(CH4、CO、CO2、O2)以及有害废气(NO、NO2、SO2)。它会聪明地 分析传感器数据以预测危险情况、报告警报并帮助规划逃生路线。的 自主的iEGAS系统可以部署在矿工身上,也可以长期部署在矿井内的固定位置。 无需用户输入或培训即可进行监控。它将是廉价的,超紧凑和重量轻,易于携带的 矿工和救援队它将利用标准接口与现有的矿山基础设施进行通信, 与无线矿井通信手持机实现高度分布式、移动的、多瓦斯监测 网络坚固的传感器平台固有地抵抗振动、烟雾、湿气和其他常见的环境。 地雷干扰物,传感器将针对可变环境条件(温度, 湿度)。建议的iEGAS系统的操作模型将在 实验室,气体浓度和环境参数可以精确控制,以模拟 地下矿井的各种条件。由多学科调查人员组成的小组将与我的小组协商, 安全专家在整个项目中,以确保开发的技术满足采矿业的需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANDREW J MASON其他文献

ANDREW J MASON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANDREW J MASON', 18)}}的其他基金

Wearable Microsystem Array for Acute Pollutant Exposure Assessment
用于急性污染物暴露评估的可穿戴微系统阵列
  • 批准号:
    8637239
  • 财政年份:
    2013
  • 资助金额:
    $ 47.27万
  • 项目类别:
Autonomous Electromechanical Gas Detection Microsystem for Mine Safety
用于矿山安全的自主机电气体检测微系统
  • 批准号:
    8138348
  • 财政年份:
    2010
  • 资助金额:
    $ 47.27万
  • 项目类别:
Autonomous Electromechanical Gas Detection Microsystem for Mine Safety
用于矿山安全的自主机电气体检测微系统
  • 批准号:
    7987170
  • 财政年份:
    2010
  • 资助金额:
    $ 47.27万
  • 项目类别:

相似海外基金

SBIR Phase I: Electromechanical Mass Transfer System for Space Operations
SBIR 第一阶段:用于太空操作的机电传质系统
  • 批准号:
    2335593
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
SBIR Phase I: An Industrial Internet of Things (IIoT) Electromechanical Steam Trap for Greenhouse Gas Reduction and Energy Savings
SBIR 第一阶段:用于减少温室气体排放和节能的工业物联网 (IIoT) 机电蒸汽疏水阀
  • 批准号:
    2324530
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
PFI-TT: Prototyping a Electromechanical Sensor to Reduce Cheese Trim Losses
PFI-TT:制作机电传感器原型以减少奶酪边角损失
  • 批准号:
    2345656
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Micro-Electromechanical Systems (MEMS)-Based Near-Zero Power Infrared Sensors for Proximity Detection
SBIR 第一阶段:基于微机电系统 (MEMS) 的近零功耗红外传感器,用于接近检测
  • 批准号:
    2304549
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Development of multi-fidelity topology optimization method for electromechanical system design
机电系统设计多保真拓扑优化方法的发展
  • 批准号:
    23H01322
  • 财政年份:
    2023
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Micro-electromechanical technology for harnessing terahertz waves
利用太赫兹波的微机电技术
  • 批准号:
    DP230103081
  • 财政年份:
    2023
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Discovery Projects
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 47.27万
  • 项目类别:
The Role of Macroscopic Defects on Electromechanical Instability in Elastomer Dielectrics and Strategies for Mitigation
宏观缺陷对弹性体电介质机电不稳定性的作用及缓解策略
  • 批准号:
    2301509
  • 财政年份:
    2023
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Volumetric imaging and computation to characterize cardiac electromechanical coupling
体积成像和计算来表征心脏机电耦合
  • 批准号:
    10629905
  • 财政年份:
    2023
  • 资助金额:
    $ 47.27万
  • 项目类别:
Providing innovative solutions to industry challenges in the electromechanical engineering and textile, apparel design and manufacturing sectors
为机电工程以及纺织、服装设计和制造领域的行业挑战提供创新解决方案
  • 批准号:
    CCB21-2021-00085
  • 财政年份:
    2022
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Applied Research and Technology Partnership Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了