Solvation Directed Design of Flavonoid Derivatives for Caspase Inhibition

用于抑制 Caspase 的类黄酮衍生物的溶剂化定向设计

基本信息

  • 批准号:
    8214271
  • 负责人:
  • 金额:
    $ 11.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-10 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This project seeks to develop a rational design methodology that utilizes a powerful solvation analysis tool, WaterMap, to direct the modification of lead compounds so that they bind with greater affinity to a given target. The methodology will be applied to design modifications to flavonoid compounds so that the resulting analogues specifically and strongly inhibit members of the Caspase family of proteins. The WaterMap technology utilizes explicit molecular dynamics simulations and a rigorous statistical mechanical theoretical treatment to create an approximate 3-dimensional mapping of the chemical potential of solvation of protein active sites. This methodology addresses two well-known deficiencies in most computational methods aimed at predicting ligand-binding affinity. First, while maintaining computational efficiency, it captures essential molecular length scale physics of water solvation that most methodologies aimed at predicting ligand-protein binding affinities ignore. Second, it provides specific information and physical insight into how lead-drugs should be modified such as to produce derivatives that can bind with greater affinity and with specificity to given targets Because of these features, the WaterMap methodology shows great promise as an aid in the lead optimization process. The rational design of flavonoid analogues that are more specific and stronger inhibitors of the caspase family of proteins will serve as a test case with the long term goal of developing a methodology that is applicable to all hydrated protein targets. Specific Aim 1 seeks to design and implement a rational design methodology that incorporates solvation information provided by the WaterMap technology that is capable of directing the design of modifications to lead compounds such that they bind with higher affinity to given targets. The assessment of Specific Aim 1 will be the goal of Specific Aim 2 which is to apply the new methodology to design modifications to flavonoid compounds that result in flavonoid analogues that bind with greater affinity to members of the Caspase family of proteins. PUBLIC HEALTH RELEVANCE: This work is highly relevant to public health since it will improve our capability to rationally design more potent drugs with fewer side effects.
描述(由申请人提供):该项目旨在开发一种合理的设计方法,该方法利用强大的溶剂化分析工具WaterMap来指导先导化合物的修饰,使它们与给定目标具有更大的亲和力。该方法将应用于设计类黄酮化合物的修饰,使所得到的类似物特异性和强烈地抑制Caspase家族蛋白的成员。WaterMap技术利用明确的分子动力学模拟和严格的统计力学理论处理来创建蛋白质活性位点溶剂化化学势的近似三维映射。这种方法解决了大多数用于预测配体结合亲和力的计算方法中两个众所周知的缺陷。首先,在保持计算效率的同时,它捕获了水溶剂化的基本分子长度尺度物理,而大多数旨在预测配体-蛋白质结合亲和力的方法都忽略了这一点。其次,它提供了具体的信息和物理见解,如何修改铅药物,如生产衍生物,可以结合更大的亲和力和特异性给定的目标

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Philip Kurtzman其他文献

Thomas Philip Kurtzman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Philip Kurtzman', 18)}}的其他基金

Solvation directed drug design: from molecular physics to lead optimization
溶剂化导向药物设计:从分子物理学到先导化合物优化
  • 批准号:
    10330792
  • 财政年份:
    2022
  • 资助金额:
    $ 11.41万
  • 项目类别:
Solvation directed drug design: from molecular physics to lead optimization
溶剂化导向药物设计:从分子物理学到先导化合物优化
  • 批准号:
    10664834
  • 财政年份:
    2022
  • 资助金额:
    $ 11.41万
  • 项目类别:
Exploiting Solvation Structure and Thermodynamics for Prospective Drug Discovery and Rational Design
利用溶剂化结构和热力学进行前瞻性药物发现和合理设计
  • 批准号:
    9278586
  • 财政年份:
    2012
  • 资助金额:
    $ 11.41万
  • 项目类别:
Exploiting Solvation Structure and Thermodynamics for Prospective Drug Discovery and Rational Design
利用溶剂化结构和热力学进行前瞻性药物发现和合理设计
  • 批准号:
    9461105
  • 财政年份:
    2012
  • 资助金额:
    $ 11.41万
  • 项目类别:
Solvation Directed Design of Flavonoid Derivatives for Caspase Inhibition
用于抑制 Caspase 的类黄酮衍生物的溶剂化定向设计
  • 批准号:
    8458118
  • 财政年份:
    2012
  • 资助金额:
    $ 11.41万
  • 项目类别:
Solvation Directed Design of Flavonoid Derivatives for Caspase Inhibition
用于抑制 Caspase 的类黄酮衍生物的溶剂化定向设计
  • 批准号:
    8606468
  • 财政年份:
    2012
  • 资助金额:
    $ 11.41万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 11.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 11.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 11.41万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 11.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 11.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 11.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 11.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 11.41万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 11.41万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 11.41万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了