Protease regulation of ovarian recrudescence

卵巢复发的蛋白酶调节

基本信息

项目摘要

DESCRIPTION (provided by applicant): Ovarian function, including follicle development, ovulation, and corpus luteum formation/degradation, is dependent upon tissue remodeling events, many of which are associated with a family of Zn+dependent endopeptidases, the matrix metalloproteinases (MMPs). Extreme remodeling of ovarian tissue is observed in photoperiodic species where seasonal changes in day length can either inhibit or stimulate hypothalamic/ pituitary secretion of GnRH/gonadotropins, leading to atrophy or resumption of ovarian function. Photo- responsive individuals are therefore excellent models for basic ovarian function, because modifications of day length naturally induce and then reverse ovarian atrophy. In photoperiodic Siberian hamsters, ovarian remodeling prompted by changes in day length is associated with differential expression of MMPs. Indeed, photostimulated return to ovarian function (recrudescence) can be impeded following in vivo administration of a broad-spectrum MMP inhibitor, GM6001. While this suggests an important role for these proteases, the action of MMPs during recrudescence and the process of how the quiescent ovary can resume cycling following weeks of atrophy is unknown. This proposal hypothesizes that 1) inhibition of recrudescence in response to GM6001 occurs because cleavage of MMP substrates that normally mediate return to ovarian function is impeded, 2) that the GM6001-treated ovary fails to return to function because key ovarian processes such as angiogenesis, granulosa cell proliferation, and steroidogenesis are dependent on MMP activity, and 3) that because gelatinases (MMPs-2/-9) are key players in ovarian cyclicity, and gelatinase activity is significantly down regulated following GM6001 administration, much of the remodeling can be attributed to gelatinases. Initial experiments will use a hypothesis-driven proteomics approach to identify substrates cleaved by MMPs during recrudescence by comparing the proteome of GM6001-treated vs. control ovaries. Examination of both mRNA and protein for key markers of angiogenesis (e.g., CD34, VEGF-R1), proliferation of granulosa cells (PCNA), and steroidogenesis (e.g., Cyp19, 32HSD) will reveal a mechanism of MMP action during recrudescence, and define a role for MMPs in these processes as GM6001 treated tissue is compared to controls. Finally, a gelatinase-specific inhibitor (SB-3CT) will be administered in vivo during photostimulated recrudescence to provide direct evidence of gelatinase action and function in the recovering ovary. Together, these studies should provide novel insight into the cellular and molecular regulation of recrudescence of ovarian function. In addition, these data will provide the first evidence of the targets of MMP action as ovarian cyclicity returns. Understanding the role that MMPs play in mammalian ovarian function by using a photoperiodic model helps to elucidate critical clinical questions of how to shut down (contraception) and restart (assisted reproduction, premature menopause) ovarian activity with non-hormonal mechanisms. PUBLIC HEALTH RELEVANCE: Ovarian recrudescence is a natural process stimulated by changes in photoperiod (the number of hours of light per day) whereby the atrophied and non-functional ovary returns to a fully functional organ in 2-8 weeks. While the hormonal initiation of recrudescence has been thoroughly examined, the cellular changes that occur at the level of the ovary remain unknown. Understanding the cellular/molecular pathways of mammalian ovarian recrudescence, such as matrix metalloproteinase (MMP) action, is novel and timely, as new non-hormonal methods of contraception and assisted reproduction techniques are clinically sought. Our studies will provide potential non-hormonal targets for clinically- geared studies focused on "turning on" and "turning off" ovarian function.
DESCRIPTION (provided by applicant): Ovarian function, including follicle development, ovulation, and corpus luteum formation/degradation, is dependent upon tissue remodeling events, many of which are associated with a family of Zn+dependent endopeptidases, the matrix metalloproteinases (MMPs). Extreme remodeling of ovarian tissue is observed in photoperiodic species where seasonal changes in day length can either inhibit or stimulate hypothalamic/ pituitary secretion of GnRH/gonadotropins, leading to atrophy or resumption of ovarian function. Photo- responsive individuals are therefore excellent models for basic ovarian function, because modifications of day length naturally induce and then reverse ovarian atrophy. In photoperiodic Siberian hamsters, ovarian remodeling prompted by changes in day length is associated with differential expression of MMPs. Indeed, photostimulated return to ovarian function (recrudescence) can be impeded following in vivo administration of a broad-spectrum MMP inhibitor, GM6001. While this suggests an important role for these proteases, the action of MMPs during recrudescence and the process of how the quiescent ovary can resume cycling following weeks of atrophy is unknown. This proposal hypothesizes that 1) inhibition of recrudescence in response to GM6001 occurs because cleavage of MMP substrates that normally mediate return to ovarian function is impeded, 2) that the GM6001-treated ovary fails to return to function because key ovarian processes such as angiogenesis, granulosa cell proliferation, and steroidogenesis are dependent on MMP activity, and 3) that because gelatinases (MMPs-2/-9) are key players in ovarian cyclicity, and gelatinase activity is significantly down regulated following GM6001 administration, much of the remodeling can be attributed to gelatinases. Initial experiments will use a hypothesis-driven proteomics approach to identify substrates cleaved by MMPs during recrudescence by comparing the proteome of GM6001-treated vs. control ovaries. Examination of both mRNA and protein for key markers of angiogenesis (e.g., CD34, VEGF-R1), proliferation of granulosa cells (PCNA), and steroidogenesis (e.g., Cyp19, 32HSD) will reveal a mechanism of MMP action during recrudescence, and define a role for MMPs in these processes as GM6001 treated tissue is compared to controls. Finally, a gelatinase-specific inhibitor (SB-3CT) will be administered in vivo during photostimulated recrudescence to provide direct evidence of gelatinase action and function in the recovering ovary. Together, these studies should provide novel insight into the cellular and molecular regulation of recrudescence of ovarian function. In addition, these data will provide the first evidence of the targets of MMP action as ovarian cyclicity returns. Understanding the role that MMPs play in mammalian ovarian function by using a photoperiodic model helps to elucidate critical clinical questions of how to shut down (contraception) and restart (assisted reproduction, premature menopause) ovarian activity with non-hormonal mechanisms. PUBLIC HEALTH RELEVANCE: Ovarian recrudescence is a natural process stimulated by changes in photoperiod (the number of hours of light per day) whereby the atrophied and non-functional ovary returns to a fully functional organ in 2-8 weeks. While the hormonal initiation of recrudescence has been thoroughly examined, the cellular changes that occur at the level of the ovary remain unknown. Understanding the cellular/molecular pathways of mammalian ovarian recrudescence, such as matrix metalloproteinase (MMP) action, is novel and timely, as new non-hormonal methods of contraception and assisted reproduction techniques are clinically sought. Our studies will provide potential non-hormonal targets for clinically- geared studies focused on "turning on" and "turning off" ovarian function.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KELLY Ansley YOUNG其他文献

KELLY Ansley YOUNG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KELLY Ansley YOUNG', 18)}}的其他基金

Regulation of Folliculogenesis During Ovarian Recrudescence
卵巢复发过程中卵泡发生的调节
  • 批准号:
    8998649
  • 财政年份:
    2016
  • 资助金额:
    $ 10.65万
  • 项目类别:
Protease regulation of ovarian recrudescence
卵巢复发的蛋白酶调节
  • 批准号:
    8401134
  • 财政年份:
    2010
  • 资助金额:
    $ 10.65万
  • 项目类别:
Protease regulation of ovarian recrudescence
卵巢复发的蛋白酶调节
  • 批准号:
    8005492
  • 财政年份:
    2010
  • 资助金额:
    $ 10.65万
  • 项目类别:
Protease regulation of ovarian recrudescence
卵巢复发的蛋白酶调节
  • 批准号:
    7760302
  • 财政年份:
    2010
  • 资助金额:
    $ 10.65万
  • 项目类别:
Protease Expression and Action in the Primate Ovary
灵长类动物卵巢中的蛋白酶表达和作用
  • 批准号:
    6603252
  • 财政年份:
    2002
  • 资助金额:
    $ 10.65万
  • 项目类别:
Protease Expression and Action in the Primate Ovary
灵长类动物卵巢中的蛋白酶表达和作用
  • 批准号:
    6550293
  • 财政年份:
    2002
  • 资助金额:
    $ 10.65万
  • 项目类别:

相似海外基金

Progression of Early Atrophic Lesions in Age-related Macular degeneration
年龄相关性黄斑变性早期萎缩性病变的进展
  • 批准号:
    10635325
  • 财政年份:
    2023
  • 资助金额:
    $ 10.65万
  • 项目类别:
In vivo Identification of Pre-Atrophic Brain Neurodegeneration in Prodromal Alzheimer Disease with Quantitative Gradient Recalled Echo MRI
利用定量梯度回忆回波 MRI 体内鉴定阿尔茨海默病前驱期的萎缩前脑神经变性
  • 批准号:
    10448152
  • 财政年份:
    2022
  • 资助金额:
    $ 10.65万
  • 项目类别:
The Development and Rescue of an Atrophic Nonunion Model
萎缩性骨不连模型的开发和挽救
  • 批准号:
    10007577
  • 财政年份:
    2019
  • 资助金额:
    $ 10.65万
  • 项目类别:
The Development and Rescue of an Atrophic Nonunion Model
萎缩性骨不连模型的开发和挽救
  • 批准号:
    10242918
  • 财政年份:
    2019
  • 资助金额:
    $ 10.65万
  • 项目类别:
Analysis of the role of AMPK in the retina for the development of a novel treatment for atrophic age-related macular degeneration
分析 AMPK 在视网膜中的作用,以开发治疗萎缩性年龄相关性黄斑变性的新方法
  • 批准号:
    18K09457
  • 财政年份:
    2018
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regeneration of atrophic salivary glands by reconstructing tissue macrophages using amniotic fluid-derived cells
利用羊水来源的细胞重建组织巨噬细胞来再生萎缩的唾液腺
  • 批准号:
    19K21370
  • 财政年份:
    2018
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The study to detect early-stage pancreatic cancer based on the data from molecular biology about the atrophic acinar cell surrounding carcinoma in situ.
该研究基于原位癌周围萎缩性腺泡细胞的分子生物学数据来检测早期胰腺癌。
  • 批准号:
    18K07897
  • 财政年份:
    2018
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiple control and visualization of self-somatic- stem cells for atrophic jaw bone augmentation
用于萎缩颌骨增量的自体干细胞的多重控制和可视化
  • 批准号:
    17H04394
  • 财政年份:
    2017
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Delivery of concentrated peripheral blood derived EPCs and functional miRNAs for atrophic salivary gland regeneration
输送浓缩的外周血来源的 EPC 和功能性 miRNA 以促进萎缩唾液腺再生
  • 批准号:
    17K17272
  • 财政年份:
    2017
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of novel oligonucleotide therapeutics using functional liposomes for atrophic muscular disorder
使用功能性脂质体开发治疗萎缩性肌肉疾病的新型寡核苷酸疗法
  • 批准号:
    16K20646
  • 财政年份:
    2016
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了