Simulation of Proton and Hydride Transfer in Enzymes

酶中质子和氢化物转移的模拟

基本信息

项目摘要

DESCRIPTION (provided by applicant): The broad, long-term objectives of this research are to elucidate the fundamental principles and mechanisms of hydrogen transfer in both protein and RNA enzyme catalysis. These objectives will be accomplished with a broad range of theoretical and computational methods, including quantum mechanical/molecular mechanical calculations, classical molecular dynamics simulations, and hybrid quantum/classical molecular dynamics simulations that provide atomic-level information about structural rearrangements and conformational motions during the catalyzed chemical reaction. These calculations will probe the roles of hydrogen bonding, electrostatics, active site reorganization, and conformational sampling in both protein and RNA enzyme catalysis. These theoretical studies will be performed in close collaboration with experimental groups, assisting in the interpretation of experimental data and providing experimentally testable predictions. The first two specific aims center on the enzyme ketosteroid isomerase (KSI), which catalyzes the isomerization of steroids. The first specific aim is to probe the role of hydrogen bonding in KSI, focusing on inductive effects along the hydrogen-bonding network, coupling among the hydrogen bonds, and the role of water molecules in the active site. The second specific aim is to examine the significance of enzyme motion in KSI, focusing on active site reorganization, conformational sampling, and the impact of distal mutations. These two specific aims will provide predictions related to several different types of experimental data, including NMR chemical shifts and electronic absorption spectra of inhibitors, time-dependent Stokes shifts of bound photoacids, and kinetics of mutants. This strong connection between theory and experiment provides an opportunity to dissect fundamental issues pertaining to hydrogen transfer reactions in enzymes. The last two specific aims center on the hepatitis delta virus (HDV) RNA enzyme (ribozyme), which catalyzes the cleavage of an internal phosphodiester bond. These two specific aims are motivated by the recent solution of a catalytically competent pre-cleaved crystal structure of this ribozyme. The third specific aim is to elucidate the proton transfer mechanism in the HDV ribozyme, focusing on the catalytic roles of a cytosine nucleotide and a magnesium ion in the active site. The fourth specific aim is to understand the role of motion in the HDV ribozyme, focusing on the correlated motions and the conformational changes occurring during the catalyzed chemical reaction. The biomedical relevance of this ribozyme is that HDV increases the severity of liver diseases caused by hepatitis B virus, and replication of HDV depends on self-cleavage of the HDV ribozyme. All of these studies are relevant to public health because the elucidation of the underlying fundamental principles of enzyme catalysis will facilitate the design of more efficient enzymes and inhibitors, thereby potentially assisting in the development of more effective drugs for a wide range of diseases. Furthermore, insights into RNA catalysis may assist in the development of ribozymes for use as therapeutic agents to cleave pathogenic RNAs. PUBLIC HEALTH RELEVANCE: These studies are relevant to public health because the elucidation of the underlying fundamental principles of enzyme catalysis will facilitate the design of more efficient enzymes and inhibitors, thereby potentially assisting in the development of more effective drugs for a broad range of diseases. Furthermore, insights into RNA catalysis may assist in the development of RNA enzymes for use as therapeutic agents to cleave pathogenic RNAs.
描述(由申请人提供):本研究的广泛、长期目标是阐明蛋白质和RNA酶催化中氢转移的基本原理和机制。这些目标将通过广泛的理论和计算方法来实现,包括量子力学/分子力学计算,经典分子动力学模拟和混合量子/经典分子动力学模拟,这些方法提供了关于催化化学反应期间结构重排和构象运动的原子级信息。这些计算将探讨蛋白质和RNA酶催化中氢键,静电,活性位点重组和构象取样的作用。这些理论研究将与实验小组密切合作,协助解释实验数据,并提供实验可检验的预测。前两个具体的目标集中在酶酮甾体异构酶(KSI),催化异构化的类固醇。第一个具体目标是探索氢键在KSI中的作用,重点是沿着氢键网络的诱导效应,氢键之间的耦合,以及水分子在活性位点中的作用。第二个具体的目的是研究KSI中酶运动的意义,重点是活性位点重组,构象采样和远端突变的影响。这两个具体的目标将提供与几种不同类型的实验数据,包括NMR化学位移和电子吸收光谱的抑制剂,时间依赖性的斯托克斯位移的结合光酸,和突变体的动力学预测。理论和实验之间的这种紧密联系提供了一个机会来剖析有关酶中氢转移反应的基本问题。最后两个具体目标集中在丁型肝炎病毒(HDV)RNA酶(核酶)上,它催化内部磷酸二酯键的裂解。这两个具体的目标是由最近的解决方案的催化能力的预切割的晶体结构的这种核酶的动机。第三个具体的目的是阐明质子转移机制的HDV核酶,专注于在活性位点的胞嘧啶核苷酸和镁离子的催化作用。第四个具体目标是了解HDV核酶中运动的作用,重点是催化化学反应过程中发生的相关运动和构象变化。该核酶的生物医学相关性在于HDV增加由B型肝炎病毒引起的肝脏疾病的严重性,并且HDV的复制依赖于HDV核酶的自切割。所有这些研究都与公共卫生有关,因为阐明酶催化的基本原理将有助于设计更有效的酶和抑制剂,从而可能有助于开发更有效的药物用于多种疾病。此外,对RNA催化的深入了解可能有助于核酶的开发,以用作切割致病RNA的治疗剂。 公共卫生关系:这些研究与公共卫生有关,因为阐明酶催化的基本原理将有助于设计更有效的酶和抑制剂,从而可能有助于开发治疗多种疾病的更有效的药物。此外,对RNA催化的了解可能有助于开发RNA酶,用作切割致病RNA的治疗剂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHARON HAMMES-SCHIFFER其他文献

SHARON HAMMES-SCHIFFER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHARON HAMMES-SCHIFFER', 18)}}的其他基金

Coupled Protons and Electrons in Biological Systems
生物系统中的质子和电子耦合
  • 批准号:
    10543740
  • 财政年份:
    2021
  • 资助金额:
    $ 7.25万
  • 项目类别:
Coupled Protons and Electrons in Biological Systems
生物系统中的质子和电子耦合
  • 批准号:
    10321617
  • 财政年份:
    2021
  • 资助金额:
    $ 7.25万
  • 项目类别:
Simulation of Proton and Hydride Transfer in Enzymes
酶中质子和氢化物转移的模拟
  • 批准号:
    7941376
  • 财政年份:
    2009
  • 资助金额:
    $ 7.25万
  • 项目类别:
SIMULATION OF PROTON AND HYDRIDE TRANSFER IN ENZYMES
酶中质子和氢化物转移的模拟
  • 批准号:
    6340282
  • 财政年份:
    2000
  • 资助金额:
    $ 7.25万
  • 项目类别:
SIMULATION OF PROTON AND HYDRIDE TRANSFER IN ENZYMES
酶中质子和氢化物转移的模拟
  • 批准号:
    6386717
  • 财政年份:
    2000
  • 资助金额:
    $ 7.25万
  • 项目类别:
SIMULATION OF PROTON AND HYDRIDE TRANSFER IN ENZYMES
酶中质子和氢化物转移的模拟
  • 批准号:
    2910352
  • 财政年份:
    1998
  • 资助金额:
    $ 7.25万
  • 项目类别:
Simulation of Protein and Hydride Transfer in Enzymes
酶中蛋白质和氢化物转移的模拟
  • 批准号:
    6579729
  • 财政年份:
    1998
  • 资助金额:
    $ 7.25万
  • 项目类别:
Simulation of Proton and Hydride Transfer in Enzymes
酶中质子和氢化物转移的模拟
  • 批准号:
    7385038
  • 财政年份:
    1998
  • 资助金额:
    $ 7.25万
  • 项目类别:
SIMULATION OF PROTON AND HYDRIDE TRANSFER IN ENZYMES
酶中质子和氢化物转移的模拟
  • 批准号:
    2608983
  • 财政年份:
    1998
  • 资助金额:
    $ 7.25万
  • 项目类别:
SIMULATION OF PROTON AND HYDRIDE TRANSFER IN ENZYMES
酶中质子和氢化物转移的模拟
  • 批准号:
    6519829
  • 财政年份:
    1998
  • 资助金额:
    $ 7.25万
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 7.25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了