Quantitative Evaluation of Reconstruction Algorithms - Resubmission 01

重建算法的定量评估-补交01

基本信息

  • 批准号:
    8384340
  • 负责人:
  • 金额:
    $ 23.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The long-term goal of this research is to develop a method to quantify the diagnostic image quality of CT images. Image reconstruction plays a pivotal role in any 3D imaging modality, such as CT, MRI, PET, SPECT, etc. As a result, there is ongoing research into developing and optimizing reconstruction algorithms. One limitation of such research is the lack of a quantitative evaluation paradigm that is related/correlated to the diagnostic quality of the image. The goal of this project is to determine the feasibility of using quantitative feature analysis of the reconstructed image as a surrogate for actually measuring radiologists' diagnostic performance on the reconstructed images. Currently methods are qualitative, ad hoc, or quantitative, but not necessarily related to diagnostic quality. When interpreting an image, radiologists use features of lesions in an image to distinguish actual disease from normal anatomy and also to distinguish between different types of pathology. This skill is developed over years of training and experience. We propose to extract quantitative features of lesions to assess the diagnostic quality of a reconstructed image. We will build on over 20 years of experience in extracting and analyzing image features to develop computer-aided diagnosis schemes. We propose to use the feature analysis techniques as a measure of the quality of a reconstructed image. Our hypothesis is that quantitative feature analysis is correlated to diagnostic performance of radiologists. If this is true, then we will have shown that it is feasible to use quantitative feature analysis to evaluate reconstruction algorithms. Specifically in this project, we will develop two databases one containing clinical breast CT images and the other simulated breast CT images with simulated lesions. We will perform an observer study using the clinical images to measure radiologists ability to characterize benign from malignant lesions in images reconstructed using different algorithms. We will use these databases and the observer study to develop a set of quantitative image features that correlate with radiologists' performance in classifying breast lesions. If we are successful, then our method can, with further development, be used to optimize reconstruction algorithms and evaluate dose reduction techniques. PUBLIC HEALTH RELEVANCE: CT reconstruction algorithms are the ultimate factor in image quality and they dictate the final appearance of image that the radiologist will interpret. Unfortunately, no method exists to quantitatively compare reconstruction algorithms in terms of diagnostic image quality (i.e., the ability of radiologists to make the correct diagnosis). This project will determine the feasibility of using quantitative features extracted from reconstructed images to evaluate the diagnostic quality produced from different reconstruction algorithms.
描述(由申请人提供):本研究的长期目标是开发一种量化CT图像诊断图像质量的方法。图像重建在任何3D成像模式中起着关键作用,例如CT、MRI、PET、SPECT等。因此,正在进行开发和优化重建算法的研究。这种研究的一个局限性是缺乏与图像的诊断质量相关的定量评价范例。该项目的目标是确定使用重建图像的定量特征分析作为实际测量放射科医生对重建图像的诊断性能的替代的可行性。目前的方法是定性的,特设的,或定量的,但不一定与诊断质量。当解释图像时,放射科医生使用图像中的病变特征来区分实际疾病与正常解剖结构,并且还区分不同类型的病理。这项技能是通过多年的培训和经验发展起来的。我们建议提取病变的定量特征,以评估重建图像的诊断质量。我们将在20多年的图像特征提取和分析经验的基础上开发计算机辅助诊断方案。我们建议使用的特征分析技术作为衡量重建图像的质量。我们的假设是,定量特征分析与放射科医师的诊断性能相关。如果这是真的,那么我们将证明, 用定量特征分析来评价重建算法是可行的。具体来说,在这个项目中,我们将开发两个数据库,一个包含临床乳腺CT图像,另一个包含模拟病变的模拟乳腺CT图像。我们将使用临床图像进行观察者研究,以测量放射科医生在使用不同算法重建的图像中表征良性和恶性病变的能力。我们将使用这些数据库和观察者研究来开发一组与放射科医师在乳腺病变分类中的表现相关的定量图像特征。如果我们是成功的,那么我们的方法,进一步发展,可以用来优化重建算法和评估剂量降低技术。 公共卫生关系:CT重建算法是影响图像质量的最终因素,它们决定了放射科医生将解释的图像的最终外观。不幸的是,不存在在诊断图像质量方面定量比较重建算法的方法(即,放射科医师做出正确诊断的能力)。本项目将确定使用从重建图像中提取的定量特征来评估不同重建算法产生的诊断质量的可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT M NISHIKAWA其他文献

ROBERT M NISHIKAWA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT M NISHIKAWA', 18)}}的其他基金

Detecting Mammographically-Occult Cancer in Women with Dense Breasts
检测乳腺致密女性的乳房X线隐匿性癌症
  • 批准号:
    9296809
  • 财政年份:
    2017
  • 资助金额:
    $ 23.7万
  • 项目类别:
A new approach to optimizing and evaluating computer-aided detection schemes
优化和评估计算机辅助检测方案的新方法
  • 批准号:
    8725661
  • 财政年份:
    2013
  • 资助金额:
    $ 23.7万
  • 项目类别:
A new approach to optimizing and evaluating computer-aided detection schemes
优化和评估计算机辅助检测方案的新方法
  • 批准号:
    8913965
  • 财政年份:
    2013
  • 资助金额:
    $ 23.7万
  • 项目类别:
A new approach to optimizing and evaluating computer-aided detection schemes
优化和评估计算机辅助检测方案的新方法
  • 批准号:
    9326987
  • 财政年份:
    2013
  • 资助金额:
    $ 23.7万
  • 项目类别:
A new approach to optimizing and evaluating computer-aided detection schemes
优化和评估计算机辅助检测方案的新方法
  • 批准号:
    9134748
  • 财政年份:
    2013
  • 资助金额:
    $ 23.7万
  • 项目类别:
A new approach to optimizing and evaluating computer-aided detection schemes
优化和评估计算机辅助检测方案的新方法
  • 批准号:
    8439396
  • 财政年份:
    2013
  • 资助金额:
    $ 23.7万
  • 项目类别:
Quantitative Evaluation of Reconstruction Algorithms - Resubmission 01
重建算法的定量评估-补交01
  • 批准号:
    8517718
  • 财政年份:
    2012
  • 资助金额:
    $ 23.7万
  • 项目类别:
SCIENTIFIC VISUALIZATION
科学可视化
  • 批准号:
    7714288
  • 财政年份:
    2008
  • 资助金额:
    $ 23.7万
  • 项目类别:
High-Performance Computer Cluster for Image Analysis
用于图像分析的高性能计算机集群
  • 批准号:
    7219190
  • 财政年份:
    2007
  • 资助金额:
    $ 23.7万
  • 项目类别:
Computerized Lesion Detection in Breast Tomosynthesis
乳腺断层合成中的计算机化病变检测
  • 批准号:
    7290123
  • 财政年份:
    2006
  • 资助金额:
    $ 23.7万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 23.7万
  • 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 23.7万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 23.7万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了