Real-time in vivo IVUS/IVPA imaging to detect and characterize vulnerable plaques
实时体内 IVUS/IVPA 成像,用于检测和表征易损斑块
基本信息
- 批准号:8768136
- 负责人:
- 金额:$ 74.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-18 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAnimal ModelAnimalsAortaArterial Fatty StreakArteriesAtherosclerosisAutopsyBiomedical EngineeringBloodCardiologyCarotid Artery Ulcerating PlaqueCathetersCessation of lifeClinicalClinical ProtocolsClinical ResearchCoronaryCoronary arteryCoronary heart diseaseCustomDepositionDetectionDiagnosticDiagnostic ImagingDiagnostic ProcedureDiseaseEngineeringEvaluationEventFamily suidaeGoalsHeartHumanImageImageryImaging DeviceImaging TechniquesImaging technologyInfiltrationInterventionLasersLifeLightLipidsLocationMethodsMicroprocessorModelingMolecularMonitorMorbidity - disease rateMorphologyMotorNecrosisNoiseOryctolagus cuniculusOutcomePathologicPatientsPerformancePhysiologic pulsePropertyReal-Time SystemsResearchResolutionRuptureSamplingSignal TransductionSourceStentsSymptomsSystemTechniquesTechnologyTestingThickThree-Dimensional ImagingTimeTissue ModelTissue SampleTissuesTranslatingTranslationsUltrasonic TransducerUltrasonographyUnited Statesbasedata acquisitiondesignflexibilityimage processingimprovedin vivoin vivo imaginginsightinstrumentationirradiationmacrophageminimally invasivemolecular/cellular imagingoptical fiberphotoacoustic imagingpost interventionprogramsprototypepublic health relevancescreeningsoundtissue phantom
项目摘要
DESCRIPTION (provided by applicant): In the United States alone, approximately 500,000 deaths per year are due to ruptured vascular plaques that were considered "insignificant" by angiographic evaluations. Available screening and diagnostic methods are insufficient to identify possible victims before the event occurs. Therefore, there is a definite and urgent clinical need for a diagnostic imaging technique that can identify and characterize the vulnerability of atherosclerotic plaques during coronary artery interventions. The overall goal of our research program is to develop an in vivo imaging technology - combined intravascular ultrasound and photoacoustic imaging - capable of visualizing both structural properties and composition of atherosclerotic plaques. The underlying hypothesis of this project is that intravascular photoacoustic (IVPA) imaging combined with intravascular ultrasound (IVUS) imaging can be implemented clinically and used to detect and determine the vulnerability of atherosclerotic plaques. Therefore, combined IVUS/IVPA imaging can improve pre-intervention planning and assist with the intervention itself, thus improving the post-intervention outcome and reducing patient morbidity. Most importantly, the proposed IVUS/IVPA imaging will not significantly change the current clinical protocol of coronary artery intervention. A wide range of scientific, biomedical engineering, and clinical problems must be addressed to fully explore the capabilities of IVUS/IVPA imaging in interventional cardiology. The central theme of the current project is to develop and test a prototype of the combined IVUS/IVPA system for real-time in vivo imaging prior to extensive clinical studies. To achieve our objective, first we will design an build a prototype of the real-time in vivo IVUS/IVPA imaging system consisting of the custom-built IVUS/IVPA imaging catheters integrated with a motor assembly and interfaced with pulsed laser source, ultrasound transmitter/receiver, and microprocessor control unit. Second, we will develop the signal/image processing algorithms necessary to assess the anatomical features of the vessel wall and plaque to identify and quantify lipid-rich necrotic cores within atheroscleroti plaques. We will optimize the performance of the system hardware and signal/image processing algorithms by imaging ex vivo atherosclerotic arteries from animal models (rabbit and swine) and human coronary artery autopsy samples. Finally, the efficacy of the in vivo real-time IVUS/IVPA imaging system will be validated using live animal models of atherosclerosis. Based on the insights gathered during this project, we will be ready to perform further large animal and clinical studies to demonstrate that the IVUS/IVPA imaging system may become a superior clinical imaging tool needed in interventional cardiology.
描述(申请人提供):仅在美国,每年就有大约500,000人死于血管造影评估认为“微不足道”的血管斑块破裂。现有的筛查和诊断方法不足以在事件发生前确定可能的受害者。因此,临床上迫切需要一种能够在冠状动脉介入治疗中识别和表征动脉粥样硬化斑块易损性的诊断成像技术。我们研究计划的总体目标是开发一种体内成像技术-结合血管内超声和光声成像-能够可视化动脉粥样硬化斑块的结构属性和组成。该项目的基本假设是,血管内光声成像(IVPA)和血管内超声(IVUS)成像可以在临床上实施,并用于检测和确定动脉粥样硬化斑块的易损性。因此,IVUS/IVPA联合成像可以改善介入前的计划,辅助介入本身,从而改善介入后的结局,降低患者的发病率。最重要的是,拟议的IVUS/IVPA成像不会显著改变目前冠状动脉介入治疗的临床方案。必须解决广泛的科学、生物医学工程和临床问题,以充分探索IVUS/IVPA成像在介入心脏病学中的能力。当前项目的中心主题是开发和测试IVUS/IVPA联合系统的原型,用于在广泛的临床研究之前进行实时活体成像。为了实现我们的目标,我们首先将设计并建立一个实时在体IVUS/IVPA成像系统的原型,该系统包括定制的IVUS/IVPA成像导管,集成了电机组件,并与脉冲激光光源、超声发射机/接收器和微处理器控制单元接口。其次,我们将开发必要的信号/图像处理算法,以评估血管壁和斑块的解剖特征,以识别和量化动脉粥样硬化斑块中富含脂质的坏死核。我们将通过对动物模型(兔和猪)和人类冠状动脉尸检样本的体外动脉粥样硬化动脉成像来优化系统硬件和信号/图像处理算法的性能。最后,体内实时IVUS/IVPA成像系统的有效性将通过动脉粥样硬化的活体动物模型进行验证。基于在此项目中收集的见解,我们将准备进行进一步的大型动物和临床研究,以证明IVUS/IVPA成像系统可能成为介入心脏病学所需的一种卓越的临床成像工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STANISLAV Y EMELIANOV其他文献
STANISLAV Y EMELIANOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STANISLAV Y EMELIANOV', 18)}}的其他基金
Image-guided cancer therapy using heat activatable CAR T cells
使用热激活 CAR T 细胞进行图像引导癌症治疗
- 批准号:
10701849 - 财政年份:2022
- 资助金额:
$ 74.96万 - 项目类别:
Image-guided cancer therapy using heat activatable CAR T cells
使用热激活 CAR T 细胞进行图像引导癌症治疗
- 批准号:
10587560 - 财政年份:2022
- 资助金额:
$ 74.96万 - 项目类别:
Trimodal vitality imaging of neural progenitor cells in the spinal cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10221069 - 财政年份:2020
- 资助金额:
$ 74.96万 - 项目类别:
Trimodal vitality imaging of neural progenitor cells in the spinal cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10032744 - 财政年份:2020
- 资助金额:
$ 74.96万 - 项目类别:
Trimodal Vitality Imaging of Neural Progenitor Cells in the Spinal Cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10397429 - 财政年份:2020
- 资助金额:
$ 74.96万 - 项目类别:
Ultrasound-guided photoacoustic imaging and tracking of stem cells in the spinal cord
超声引导光声成像和脊髓干细胞追踪
- 批准号:
9978212 - 财政年份:2020
- 资助金额:
$ 74.96万 - 项目类别:
Trimodal Vitality Imaging of Neural Progenitor Cells in the Spinal Cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10611905 - 财政年份:2020
- 资助金额:
$ 74.96万 - 项目类别:
Magnetic Steering and Longitudinal Visualization of Stem Cells for Trabecular Meshwork Therapy in Glaucoma
用于青光眼小梁网治疗的干细胞磁控和纵向可视化
- 批准号:
10653277 - 财政年份:2019
- 资助金额:
$ 74.96万 - 项目类别:
Magnetic Steering and Longitudinal Visualization of Stem Cells for Trabecular Meshwork Therapy in Glaucoma
用于青光眼小梁网治疗的干细胞磁控和纵向可视化
- 批准号:
10459456 - 财政年份:2019
- 资助金额:
$ 74.96万 - 项目类别:
Magnetic Steering and Longitudinal Visualization of Stem Cells for Trabecular Meshwork Therapy in Glaucoma
用于青光眼小梁网治疗的干细胞磁控和纵向可视化
- 批准号:
10179400 - 财政年份:2019
- 资助金额:
$ 74.96万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 74.96万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 74.96万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 74.96万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 74.96万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 74.96万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 74.96万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 74.96万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 74.96万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 74.96万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 74.96万 - 项目类别:
Continuing Grant