Molecular and Neural Mechanisms regulating Foraging and Food Intake
调节觅食和食物摄入的分子和神经机制
基本信息
- 批准号:9797692
- 负责人:
- 金额:$ 40.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-07 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimal ModelAnimalsBehaviorBiological AssayBrainCellsChronicComplexDesire for foodDiseaseDissectionDrosophila melanogasterEatingEating BehaviorEating DisordersEnergy IntakeEnergy MetabolismEsthesiaFailureFoodFood deprivation (experimental)GenesGeneticGenetic ModelsGenetic ScreeningHourHumanHungerIndividualIngestionInterneuronsKnowledgeLeadLifeMetabolic syndromeModelingModificationMolecularMonitorMusNervous system structureNeuronsNutrientObesityOrganismPathogenesisPatientsPerceptionPhotonsPopulationProcessResearchRodent ModelRoleSensoryTaste PerceptionTechnologyTestingTherapeuticVertebratesenergy balancefeedingflyhedonicinsightmind controlneural circuitneuromechanismneuroregulationnoveloptogeneticstreatment strategytwo photon microscopyvirtual reality
项目摘要
ABSTRACT
In normal individuals, food intake is strictly regulated by sensory, homeostatic and hedonic neural circuits, which
balance energy intake with energy expenditure. Failure to regulate food perception and appetite result in
maladaptive eating behaviors and an increase in the occurrence of metabolic syndromes and eating disorders.
Neural circuits that regulate food intake have been extensively investigated in rodent models. However, the
complexity of the mammalian brain makes it very challenging to explain the underlying molecular mechanisms
and circuit dynamics controlling food intake. I propose to use a genetically tractable model organism, the fly
(Drosophila melanogaster), to understand the fundamental principles of how the brain integrates the sensory
percept of food with the sensation of hunger to regulate food intake on the level of molecules, cells and circuits.
Flies are an excellent model to investigate these processes because they have 1000-fold fewer neurons in the
brain than mice, and yet they still show hunger states and specific food intake control remarkably similar to those
in vertebrates. Furthermore, the fly nervous system is more accessible for genetic modifications, anatomical
studies and monitoring the activity of large populations of neurons in behaving animals. Previously, I have shown
that flies, like humans, regulate their food intake by integrating the taste and nutrient value of food with hunger
sensation in the nervous system. I identified a novel class of excitatory interneurons (IN1) in the fly brain that
regulate food ingestion. In this project, we will first identify the IN1 food intake circuitry using optogenetics and
anterograde transsynaptic circuit tracing. Next, we will reveal how IN1 neurons and downstream circuitry change
activity during food search in a virtual reality foraging assay using two-photon microscopy. Finally, using cutting-
edge three-photon technology, we will capture the activity of IN1 neurons chronically in an intact fly as flies are
being food deprived. Functional dissection of IN1 circuitry will lead us to fundamental principles that the nervous
system uses to regulate food intake. In parallel with our food intake circuit dissection efforts, we also identified 8
evolutionary conserved genes in a large genetic screen for flies that fail to show compensatory feeding after 24
hours of food deprivation. We will anatomically and functionally dissect the role of these genes and the neural
circuits they control in regulating food intake. Finally, we will test the interaction of the candidate food intake
genes and the IN1 circuitry in regulating food perception and appetite control. Modelling the food intake and
appetite control systematically in a genetically tractable organism allows us to reveal new molecular and neural
control mechanisms. Once, we discover key mechanisms underlying food intake and appetite, we can search
for similar processes in more complex mammalian models and in patients suffering from obesity or eating
disorders to develop treatment strategies that will intervene with the pathogenesis of these life threating
diseases.
摘要
在正常人中,食物摄入量受到感觉、体内平衡和享乐性神经回路的严格调节,这些神经回路
平衡能量摄入和能量消耗。未能控制对食物的感知和胃口会导致
饮食行为不适应,代谢综合征和饮食失调的发生率增加。
在啮齿动物模型中,对调节食物摄入量的神经回路进行了广泛的研究。然而,
哺乳动物大脑的复杂性使得解释潜在的分子机制变得非常困难。
以及控制食物摄入量的回路动力学。我建议使用一种遗传上易驯服的模式生物--苍蝇
(黑腹果蝇),了解大脑如何整合感官的基本原理
感知食物的饥饿感,在分子、细胞和回路的水平上调节食物的摄入量。
苍蝇是研究这些过程的一个很好的模型,因为它们在大脑的
大脑比老鼠强,但它们仍然表现出饥饿状态和特定的食物摄入量控制,与那些
在脊椎动物中。此外,苍蝇的神经系统更容易进行基因改造,从解剖学上讲
研究和监测行为动物体内大量神经元的活动。之前,我已经展示了
像人类一样,苍蝇通过将食物的味道和营养价值与饥饿相结合来调节它们的食物摄入量
神经系统的感觉。我在苍蝇脑中发现了一类新的兴奋性中间神经元(In1),
控制食物摄取。在这个项目中,我们将首先利用光遗传学和
顺行跨突触回路追踪。接下来,我们将揭示in1神经元和下游电路的变化。
使用双光子显微镜的虚拟现实觅食实验中食物搜索过程中的活动。最后,使用切割-
边缘三光子技术,我们将像果蝇一样,长期捕捉完整果蝇体内in1神经元的活动。
被剥夺食物。IN1回路的功能解剖将引导我们了解神经的基本原理
系统用来调节食物摄入量。在我们的食物摄取回路解剖工作的同时,我们还发现了8
在一个大的遗传屏幕上进化保守的基因,用于24小时后没有显示出补偿摄食的果蝇
数小时的食物匮乏。我们将从解剖学和功能上剖析这些基因和神经的作用。
它们控制着调节食物摄入量的回路。最后,我们将测试候选食物摄入量的交互作用
基因和调节食物知觉和食欲控制的in1回路。对食物的摄入量和
在基因易驯化的有机体中系统地控制食欲使我们能够揭示新的分子和神经
控制机制。一旦我们发现了食物摄取和食欲的关键机制,我们就可以搜索
在更复杂的哺乳动物模型和肥胖或进食患者中进行类似的过程
开发治疗策略,以干预这些生命威胁的发病机制
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nilay Yapici其他文献
Nilay Yapici的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nilay Yapici', 18)}}的其他基金
Neural mechanisms of taste and metabolic state integration in the brainstem
脑干味觉和代谢状态整合的神经机制
- 批准号:
10524319 - 财政年份:2022
- 资助金额:
$ 40.06万 - 项目类别:
Investigating temperature sensitive neural circuits that regulate reproductive dormancy
研究调节生殖休眠的温度敏感神经回路
- 批准号:
10084271 - 财政年份:2020
- 资助金额:
$ 40.06万 - 项目类别:
Molecular and Neural Mechanisms regulating Foraging and Food Intake
调节觅食和食物摄入的分子和神经机制
- 批准号:
10454362 - 财政年份:2019
- 资助金额:
$ 40.06万 - 项目类别:
Molecular and Neural Mechanisms regulating Foraging and Food Intake
调节觅食和食物摄入的分子和神经机制
- 批准号:
10670270 - 财政年份:2019
- 资助金额:
$ 40.06万 - 项目类别:
Molecular and Neural Mechanisms regulating Foraging and Food Intake
调节觅食和食物摄入的分子和神经机制
- 批准号:
10225381 - 财政年份:2019
- 资助金额:
$ 40.06万 - 项目类别:
Molecular and Neural Mechanisms regulating Foraging and Food Intake
调节觅食和食物摄入的分子和神经机制
- 批准号:
10387757 - 财政年份:2019
- 资助金额:
$ 40.06万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists