Statistical mechanics with quantum potentials: Application to protein-ligand binding affinities
量子势统计力学:在蛋白质-配体结合亲和力中的应用
基本信息
- 批准号:9795701
- 负责人:
- 金额:$ 71.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementActive SitesAddressAffinityBindingBinding ProteinsBinding SitesCationsChargeChemicalsComputer AssistedComputer softwareConsumptionDependenceDiseaseDockingDrug DesignDrug IndustryDrug KineticsEnvironmentFree EnergyGoalsIndustryLaboratoriesLigand BindingLigandsMeasuresMechanicsMetalsMethodologyMethodsMiningModelingMolecular ConformationNaturePharmaceutical PreparationsPhasePhysicsPotential EnergyProcessPropertyProteinsQuantum MechanicsResourcesSchemeScientistScoring MethodSeriesSmall Business Innovation Research GrantSolubilitySpeedStatistical MechanicsSystemTestingTimebasechemical synthesiscomputational chemistrycomputer clusterdesigndrug candidatedrug developmentdrug discoveryexperimental studyimprovedinhibitor/antagonistlead optimizationmolecular mechanicsnovel therapeuticsparallelizationprogramsquantumresearch and developmentsmall molecule libraries
项目摘要
During the drug development process, lead optimization requires intensive chemical synthesis and testing
efforts. The process can be highly iterative in nature with multiple rounds of synthesis required, because
changes made to improve, for example, pharmacokinetic factors such as solubility can also decrease potency,
requiring further changes to recover potency, and so on. Consistently accurate computational predictions of
protein-ligand binding affinities would significantly reduce this expensive and time consuming burden, by
providing medicinal chemists the ability to more aggressively prioritize ligands for synthesis and testing based
on computational results. However, currently, achievement of consistent accuracy in protein-ligand binding
affinity prediction is an unmet goal in the field of computational chemistry. Conventional docking and scoring
methods have been shown to provide enrichment of active vs. inactive ligands in chemical libraries, but still are
very limited in their ability to rank candidate ligands by their binding affinities. Even advances like free energy
perturbation (FEP) and VeraChem's own mining minima free energy method VM2, remain limited in their
ability to consistently provide the accuracy levels needed. Importantly, all of these methods have in common a
dependency on classical molecular mechanics (MM) force fields, and even the best force fields for proteins and
drug-like molecules are not guaranteed to have optimal parameters nor to provide adequate descriptions of
chemical interactions involving, for example, π-stacking, polarization, charge transfer, or metal cations. In fact,
the approximations inherent in typical force fields are thought to be a key factor limiting accuracy. In this fast-
track SBIR proposal, we aim to address this key limitation by integrating VeraChem's free energy method VM2
with quantum mechanical (QM) potentials, producing a new software package for QM based protein-ligand
free energy calculations called PLQM-VM2. This package will be distinct from other free energy methods, such
as FEP, which is not readily implemented with QM potentials. Similarly, although QM has been applied to
protein-ligand systems, existing methods are limited to focusing on a single conformation, whereas PLQM-
VM2 will integrate existing force field-based conformational searching with QM energy and free energy
refinement. Phase I will provide a first level of QM protein-ligand free energy capability, integrating VM2 with
a fast semi-empirical QM treatment of the ligand and protein active site. In Phase II, a capability to allow fast
and accurate inclusion of protein atoms beyond the active site will be added through a SEQM/polarizable force
field method, and a very efficient QM fragmentation scheme will enable energy corrections at higher-level QM.
Parallelization on CPUs and GPUs will provide fast enough turnaround to support industry R&D, and
submission of calculations to both local computer clusters and cloud resources will be supported. The package
will be tested and best practices defined through application to multiple protein targets each with high quality
measured affinities for a large series of non-covalent inhibitors.
在药物开发过程中,先导化合物优化需要密集的化学合成和测试
努力该过程本质上是高度迭代的,需要多轮合成,因为
为改善例如药物动力学因素如溶解度而进行的改变也会降低效力,
需要进一步的变化来恢复效力,等等。
蛋白质-配体结合亲和力将显著降低这种昂贵和耗时的负担,
为药物化学家提供了更积极地优先考虑配体用于合成和基于测试的能力,
计算结果。然而,目前,在蛋白质-配体结合中实现一致的准确性,
亲和性预测是计算化学领域中未实现的目标。常规对接和评分
已经显示了在化学文库中提供活性配体相对于非活性配体的富集的方法,但是仍然
它们通过其结合亲和力对候选配体进行排序的能力非常有限。即使是像自由能源这样的进步
微扰(FEP)和VeraChem自己的挖掘最小自由能方法VM 2,仍然局限于他们的
能够始终如一地提供所需的准确度。重要的是,所有这些方法都有一个共同点,
依赖于经典分子力学(MM)力场,甚至是蛋白质和
药物样分子不能保证具有最佳参数,也不能提供对
涉及例如π堆积、极化、电荷转移或金属阳离子的化学相互作用。事实上,
典型力场中固有的近似被认为是限制精度的关键因素。在这种快速-
跟踪SBIR提案,我们的目标是通过整合VeraChem的自由能方法VM 2来解决这一关键限制
与量子力学(QM)的潜力,产生一个新的软件包QM为基础的蛋白质配体
称为PLQM-VM 2的自由能计算。该软件包将不同于其他自由能方法,如
作为FEP,这是不容易实现的QM潜力。同样,尽管QM已应用于
蛋白质-配体系统,现有的方法仅限于关注单一构象,而PLQM-
VM 2将整合现有的基于力场的构象搜索与QM能量和自由能
精致。第一阶段将提供第一水平的QM蛋白质-配体自由能能力,将VM 2与
配体和蛋白质活性位点的快速半经验QM处理。在第二阶段,
并且将通过SEQM/极化力添加超出活性位点的蛋白质原子的精确包含
场方法,和一个非常有效的QM碎片方案将使能量校正在更高级别的QM。
CPU和GPU上的并行化将提供足够快的周转时间,以支持行业研发,
将支持向本地计算机集群和云资源提交计算结果。包装
将通过应用于多个蛋白质靶点进行测试和最佳实践定义,每个靶点都具有高质量
测量了大量非共价抑制剂的亲和力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Webb其他文献
Simon Webb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Webb', 18)}}的其他基金
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 71.52万 - 项目类别:
Covalent protein-ligand binding affinities with VM2
与 VM2 的共价蛋白-配体结合亲和力
- 批准号:
10311541 - 财政年份:2020
- 资助金额:
$ 71.52万 - 项目类别:
Statistical Mechanics with Quantum Potentials: Application to Host-Gues
具有量子势的统计力学:在主人-客人中的应用
- 批准号:
8650081 - 财政年份:2014
- 资助金额:
$ 71.52万 - 项目类别:
Statistical Mechanics with Quantum Potentials: Application to Host-Gues
具有量子势的统计力学:在主人-客人中的应用
- 批准号:
8991772 - 财政年份:2014
- 资助金额:
$ 71.52万 - 项目类别:
Statistical Mechanics with Quantum Potentials: Application to Host-Gues
具有量子势的统计力学:在主人-客人中的应用
- 批准号:
9248382 - 财政年份:2014
- 资助金额:
$ 71.52万 - 项目类别:
Statistical Mechanics with Quantum Potentials: Application to Host-Gues
具有量子势的统计力学:在主人-客人中的应用
- 批准号:
9040209 - 财政年份:2014
- 资助金额:
$ 71.52万 - 项目类别:
Multilevel Parallelization of Software for Accurate Protein-Ligand Affinities
软件的多级并行化可实现准确的蛋白质-配体亲和力
- 批准号:
8217262 - 财政年份:2010
- 资助金额:
$ 71.52万 - 项目类别:
Multilevel Parallelization of Software for Accurate Protein-Ligand Affinities
软件的多级并行化可实现准确的蛋白质-配体亲和力
- 批准号:
7906160 - 财政年份:2010
- 资助金额:
$ 71.52万 - 项目类别:
Multilevel Parallelization of Software for Accurate Protein-Ligand Affinities
软件的多级并行化可实现准确的蛋白质-配体亲和力
- 批准号:
8440752 - 财政年份:2010
- 资助金额:
$ 71.52万 - 项目类别:
Multilevel Parallelization of Software for Accurate Protein-Ligand Affinities
软件的多级并行化可实现准确的蛋白质-配体亲和力
- 批准号:
8200192 - 财政年份:2010
- 资助金额:
$ 71.52万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 71.52万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 71.52万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 71.52万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 71.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 71.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 71.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 71.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 71.52万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 71.52万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 71.52万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




