Modulating Morphogenesis: Genetic Regulation of Cardiac Cell Movement in Zebrafish
调节形态发生:斑马鱼心肌细胞运动的遗传调控
基本信息
- 批准号:9513941
- 负责人:
- 金额:$ 38.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureAutomobile DrivingBehaviorBilateralBirthCardiacCardiac MyocytesCellsCommunitiesConfocal MicroscopyCongenital Heart DefectsCuesDataDepositionDestinationsEmbryoEndodermExtracellular MatrixFutureGenesGeneticHeartHeart AbnormalitiesIndividualIntegral Membrane ProteinInvestigationLigandsLightLive BirthMedialMembraneModelingMolecularMorphogenesisMovementMusMutationMyocardialMyocardiumOrganOrganogenesisPathway interactionsPatternPhasePlatelet-Derived Growth FactorPlatelet-Derived Growth Factor ReceptorPlayPopulationProcessProteinsProteomicsRegulationResearchRoleRouteSignal TransductionStructureTestingTimeTissue EngineeringTissuesTransgenesTubeWorkZebrafishcardiac repaircardiogenesiscell behaviorcell motilitycohesioncongenital heart disorderextracellularinsightmutantnovelthree dimensional structuretime usevertebrate genome
项目摘要
PROJECT SUMMARY
Organogenesis relies upon the carefully coordinated regulation of collective cell movement, in which a group of
cells operate as a cohesive entity, coordinating their individual trajectories to reach a common destination.
Cardiogenesis, for example, employs collective cell movement during multiple phases of morphogenesis,
including the assembly of the heart tube, the protrusion of trabeculae, and the construction of septae. Despite
the importance of these morphogenetic processes, we do not yet understand the molecular mechanisms that
govern collective cell behavior in the developing heart. In particular, the cues that control the timing and routes
of cardiac cell movement remain largely mysterious.
Here, we aim to decipher the genetic pathways that control collective cell movement during heart tube
assembly in the zebrafish embryo. To build the heart tube, bilateral groups of cardiomyocytes move toward the
midline and merge through a process called cardiac fusion. Our prior studies have suggested a model in which
interactions between the myocardium, endoderm, and extracellular matrix (ECM) act to facilitate cardiac fusion.
However, the elucidation of these tissue-level interactions has not answered key open questions regarding the
molecular mechanisms that drive cell behavior. Notably, we do not yet know which signals dictate the direction
of cardiomyocyte trajectories or which cues control the rate of cardiomyocyte mobility. It is therefore exciting
that we will investigate two novel regulators of cardiomyocyte movement – the platelet-derived growth factor
receptor Pdgfra and the transmembrane protein Tmem2 – that are poised to address these unresolved issues.
First, to test the hypothesis that medially-located PDGF ligands activate Pdgfra in cardiomyocytes and thereby
control the direction of cardiomyocyte movement, we will (a) employ time-lapse analysis to pinpoint the impact
of pdgfra on myocardial cell behavior, (b) use tissue-specific transgenes to determine where pdgfra acts to
influence cardiac fusion, (c) test whether PDGF ligands act as directional cues for myocardial movement, (d)
identify effector pathways acting downstream of Pdgfra in this context, and (e) evaluate whether Pdgfra plays a
comparable role during cardiac fusion in mouse. Second, to test the hypothesis that the Tmem2 ectodomain
facilitates an efficient rate of myocardial motility through modulation of the ECM, we will (a) employ time-lapse
analysis to determine the influence of tmem2 on myocardial cell behavior, (b) determine whether tmem2 has a
non-autonomous effect on myocardial movement, (c) test whether Tmem2 regulates cardiac fusion by
modulating the ECM, and (d) utilize structure-function and proteomic analyses to identify which domains of
Tmem2 are required for its function and which proteins interact with these domains.
Together, these studies will reveal essential mechanisms of heart tube assembly, uncover new paradigms for
the regulation of collective cardiac cell movement, shed light on the origins of congenital heart disease, and
facilitate future tissue engineering approaches for cardiac repair.
项目摘要
器官发生依赖于集体细胞运动的精心协调的调节,其中一组
细胞作为一个有凝聚力的实体运作,协调它们各自的轨迹以到达共同的目的地。
例如,心脏发生在形态发生的多个阶段采用集体细胞运动,
包括心管的组装、小梁的突出和隔膜的构造。尽管
尽管我们认识到这些形态发生过程的重要性,但我们还不了解
控制着发育中心脏的细胞行为特别是控制时间和路线的线索
心脏细胞运动的机制仍然是个谜
在这里,我们的目标是破译控制集体细胞运动的遗传途径,
在斑马鱼胚胎中组装。为了构建心管,两侧的心肌细胞群向左移,
中线并通过称为心脏融合的过程合并。我们之前的研究提出了一个模型,
心肌、内胚层和细胞外基质(ECM)之间的相互作用促进心脏融合。
然而,这些组织水平的相互作用的阐明并没有回答关于
驱动细胞行为的分子机制。值得注意的是,我们还不知道哪些信号决定了方向
或哪些线索控制心肌细胞运动的速率。因此,
我们将研究两种新的心肌细胞运动调节因子-血小板衍生生长因子
受体Pdgfra和跨膜蛋白Tmem 2-这些都准备解决这些悬而未决的问题。
首先,为了检验位于中间的PDGF配体激活心肌细胞中的Pdgfra,从而激活心肌细胞中的Pdgfra的假设,
控制心肌细胞运动的方向,我们将(a)采用时间推移分析来确定影响
(B)使用组织特异性转基因来确定pdgfra在哪里起作用,
影响心脏融合,(c)测试PDGF配体是否作为心肌运动的定向线索,(d)
鉴定在这种情况下作用于Pdgfra下游的效应子途径,和(e)评估Pdgfra是否在Pdgfra下游起作用。
在小鼠心脏融合过程中的作用相当。第二,为了检验Tmem 2胞外域
通过ECM的调节促进心肌运动的有效速率,我们将(a)采用时间推移
分析以确定tmem 2对心肌细胞行为的影响,(B)确定tmem 2是否具有
(c)测试Tmem 2是否通过以下方式调节心脏融合:
调节ECM,和(d)利用结构-功能和蛋白质组学分析来鉴定哪些结构域
Tmem 2是其功能所必需的,并且哪些蛋白质与这些结构域相互作用。
总之,这些研究将揭示心管组装的基本机制,揭示新的范式,
集体心脏细胞运动的调节,揭示了先天性心脏病的起源,
促进未来心脏修复的组织工程方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEBORAH YELON其他文献
DEBORAH YELON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEBORAH YELON', 18)}}的其他基金
Weinstein Cardiovascular Development and Regeneration Conference
韦恩斯坦心血管发育与再生会议
- 批准号:
10683505 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Modulating Morphogenesis: Genetic Regulation of Cardiac Cell Movement in Zebrafish
调节形态发生:斑马鱼心肌细胞运动的遗传调控
- 批准号:
9330923 - 财政年份:2016
- 资助金额:
$ 38.75万 - 项目类别:
Genetic Regulation of Outflow Tract Formation in Zebrafish
斑马鱼流出道形成的遗传调控
- 批准号:
8131347 - 财政年份:2011
- 资助金额:
$ 38.75万 - 项目类别:
Regulation of cardiac chamber morphogenesis in zebrafish
斑马鱼心室形态发生的调节
- 批准号:
7072323 - 财政年份:2005
- 资助金额:
$ 38.75万 - 项目类别:
Regulation of cardiac chamber morphogenesis in zebrafish
斑马鱼心室形态发生的调节
- 批准号:
7243460 - 财政年份:2005
- 资助金额:
$ 38.75万 - 项目类别:
Regulation of cardiac chamber morphogenesis in zebrafish
斑马鱼心室形态发生的调节
- 批准号:
7431653 - 财政年份:2005
- 资助金额:
$ 38.75万 - 项目类别:
Regulation of cardiac chamber morphogenesis in zebrafish
斑马鱼心室形态发生的调节
- 批准号:
6970395 - 财政年份:2005
- 资助金额:
$ 38.75万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Fellowship