Mechanisms for Internal Models in a Cerebellum-like Circuit

类小脑回路中的内部模型机制

基本信息

  • 批准号:
    9504660
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Humans and other animals learn and store sophisticated models of the causal relationships that govern their interactions with the world. Such internal models are likely critical for transforming ambiguous and delayed sensory data into stable perceptions and coordinated movements. For example, distinguishing external sensory input from those that are self-generated could be accomplished via an internal model that predicts the sensory consequences of an animal’s own motor commands. Despite their potential importance for both normal brain function and neurological disorders, it has proven challenging to understand how internal models are actually implemented in neural circuits. This renewal proposal applies a combination of experimental and theoretical approaches to a model system—the weakly electric fish—with unique advantages for addressing this question. Our previous studies of electric fish were successful in developing a detailed mechanistic model of how neurons at the first stage of processing in the electrosensory lobe (ELL) predict and cancel out the effects of the fish’s own electric organ discharge (EOD). However, these studies considered a highly simplified version of the true problem facing the electrosensory system. Under natural conditions, electrosensory inputs vary moment-to-moment depending both on the movements of the fish (i.e. the position of the electric organ in the tail versus electroreceptors on the skin) and the temporal pattern of EOD motor commands emitted by the fish. Solving this problem requires a more complex internal model, akin to those believed to be generated in the mammalian brain. In addition, past models ignored key features of ELL circuitry, such as plasticity of inhibitory synapses, which likely play key functional roles (both in ELL and in other vertebrate brain circuits). By addressing these issues the proposed research will provide general insights into how neural circuits contribute to distinguishing self-generated from external stimuli. The proposed studies will also provide direct links between neural representations, well-defined circuitry, synaptic plasticity, and a behaviorally relevant systems level function. Though forging such links is a primary goal of neuroscience, there are still relatively few cases in which they can actually be made.
项目总结/摘要 人类和其他动物学习并储存复杂的因果关系模型,这些模型支配着它们的行为。 与世界的互动。这种内部模型对于将模糊和延迟的 将感官数据转化为稳定的感知和协调的运动。例如,区分外部 来自那些自我生成的感官输入可以通过预测 动物自身运动指令的感官后果。尽管它们对双方都有潜在的重要性, 正常的大脑功能和神经系统疾病,它已被证明具有挑战性,以了解内部模型如何 都是在神经回路中实现的。这一更新建议采用了实验性和 模型系统的理论方法-弱电鱼-具有独特的优势, 这个问题我们以前的研究电鱼成功地发展了一个详细的机械模型 在第一阶段的神经元处理在电感觉叶(ELL)预测和抵消了 鱼自身的电器官放电(EOD)。然而,这些研究认为, 这是电感觉系统面临的真正问题的一个版本。在自然条件下, 根据鱼的运动(即, 尾部与皮肤上的电感受器)和由尾部发出的EOD运动命令的时间模式。 鱼.解决这个问题需要一个更复杂的内部模型,类似于那些被认为是在 哺乳动物的大脑此外,过去的模型忽略了ELL电路的关键特征,例如 抑制性突触,这可能发挥关键的功能作用(在ELL和其他脊椎动物的大脑回路)。通过 为了解决这些问题,拟议中的研究将为神经回路如何发挥作用提供一般性的见解。 区分自我产生和外部刺激。拟议的研究还将提供直接联系, 在神经表征、明确的回路、突触可塑性和行为相关系统之间, 水平函数虽然建立这样的联系是神经科学的主要目标,但在这方面的案例仍然相对较少。 它们实际上是可以制造的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel Sawtell其他文献

Nathaniel Sawtell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathaniel Sawtell', 18)}}的其他基金

Mechanisms for cancelling self-generated sounds in the mouse dorsal cochlear nucleus
消除小鼠耳蜗背核中自生声音的机制
  • 批准号:
    9925765
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
Mechanisms for cancelling self-generated sounds in the mouse dorsal cochlear nucleus
消除小鼠耳蜗背核中自生声音的机制
  • 批准号:
    9280918
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
Roles for Granule Cells in Adaptive Processing in a Cerebellum-like Circuit
颗粒细胞在类小脑回路自适应处理中的作用
  • 批准号:
    8369350
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
Roles for Granule Cells in Adaptive Processing in a Cerebellum-like Circuit
颗粒细胞在类小脑回路自适应处理中的作用
  • 批准号:
    8661796
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
Roles for Granule Cells in Adaptive Processing in a Cerebellum-like Circuit
颗粒细胞在类小脑回路自适应处理中的作用
  • 批准号:
    8488506
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
Mechanisms for Internal Models in a Cerebellum-like Circuit
类小脑回路中的内部模型机制
  • 批准号:
    9302570
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:

相似海外基金

CAREER: Next-generation of Wirelessly Powered Implantable Neuromodulation and Electrophysiological Recording System for Long-term Behavior Study of Freely-Moving Animals
职业:下一代无线供电植入式神经调节和电生理记录系统,用于自由移动动物的长期行为研究
  • 批准号:
    2309413
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Developing remote monitoring system of aquatic animals' behavior and ecology to reform ecosystem conservation
开发水生动物行为和生态远程监测系统改革生态系统保护
  • 批准号:
    22K18432
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
OCE-PRF: Cliff Hangers: Investigating Effects of a Submarine Canyon on the Distribution and Behavior of Midwater Animals and their Predators
OCE-PRF:悬崖吊架:调查海底峡谷对中层水域动物及其捕食者的分布和行为的影响
  • 批准号:
    2126537
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Next-generation of Wirelessly Powered Implantable Neuromodulation and Electrophysiological Recording System for Long-term Behavior Study of Freely-Moving Animals
职业:下一代无线供电植入式神经调节和电生理记录系统,用于自由移动动物的长期行为研究
  • 批准号:
    1943990
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Study on factors that increase or decrease the vigilance behavior of wild animals: the effect of species differences and visual stimuli
野生动物警觉行为增减因素研究:物种差异和视觉刺激的影响
  • 批准号:
    20K06353
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neural circuit underlying flexible behavior in animals
动物灵活行为的神经回路
  • 批准号:
    19H01769
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of adaptive mechanisms in chemical localization behavior of animals by using novel devices to intervene in sensory and motor functions
使用新型装置干预感觉和运动功能来分析动物化学定位行为的适应性机制
  • 批准号:
    19H02104
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life Cost Strategy for Wild Animals Using Wearable Behavior Recording Devices and Telomere Measurement
使用可穿戴行为记录设备和端粒测量的野生动物生命成本策略
  • 批准号:
    18K14788
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Modeling and application of energy-efficient behavior in calling animals
动物呼叫节能行为建模及应用
  • 批准号:
    18K18005
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Cooperative behavior of non-human animals focusing on reward sharing -comparison between rodents and birds-
注重奖励分享的非人类动物的合作行为-啮齿类动物与鸟类的比较-
  • 批准号:
    18K12020
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了