Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Establish Objective Clinical Outcome Measures for Mandibular Osteoradionecrosis

使用动态对比增强磁共振成像 (DCE-MRI) 建立下颌放射性骨坏死的客观临床结果测量

基本信息

  • 批准号:
    9247170
  • 负责人:
  • 金额:
    $ 65.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Changes in the epidemiology of head and neck cancers have resulted in an increasing number of younger and healthier patients being treated with definitive external beam radiotherapy (EBRT). The long-term sequelae of radiotherapy in a patient population with good clinical outcomes and extended life expectancy are becoming increasingly relevant in the management of treatment-associated morbidity and mortality. Osteoradionecrosis (ORN) of the mandible is a challenging issue related to irradiation, occurring in up to 16% of patients with various types of head and neck cancers. Altered bone vascularity and opportunistic infections within the oral cavity contribute to the development of ORN, leading to an inexorable process of bone destruction that does not follow the normal sequence of healing events. Early-stage ORN is often managed using antibiotics, local wound care, and hyperbaric oxygen (HBO). Advanced ORN requires surgical resection and reconstruction with healthy non-irradiated tissue. Successful management of this disease process requires an enhanced ability to identify patients at risk for ORN, monitor the effectiveness of conservative management, and improve preoperative planning to ensure clear margins at the time of resection. However, a standardized, objective staging and monitoring system for ORN is not currently available. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a clinically available quantitative imaging method that is increasingly employed to assess microvascular function in the study of solid tumors of the head and neck. At our institution, DCE-MRI is integrated into a multimodality clinical algorithm aimed at improving the diagnosis, staging, and oncologic surveillance of head and neck tumors. DCE-MRI can detect altered bone vascularity associated with bone healing, necrosis and metastatic involvement, with excellent spatial resolution. We hypothesize that DCE-MRI can be used to detect alterations in bone vascularity following irradiation to monitor ORN clinical progression and response to treatment. To test this hypothesis, we will evaluate the potential of DCE-MRI to identify patients at risk for mandibular ORN, monitor response to conservative management, and determine the extent of advanced mandibular ORN to assist in surgical planning. Successful completion of this proposal has the potential to revolutionize the diagnosis and management of mandibular ORN. For the first time, clinicians will be able to identify patients at risk for ORN and manage post-radiotherapy care appropriately. The effectiveness of currently employed conservative measures could be tested using an objective measure and improved preoperative planning could reduce the rate of surgical failure due to residual compromised bone.
 描述(申请人提供):头颈部癌症流行病学的变化导致越来越多的年轻和健康的患者接受明确的体外放射治疗(EBRT)。放射治疗的长期后遗症在患者群体中具有良好的临床结果和延长的预期寿命,在管理与治疗相关的发病率和死亡率方面变得越来越重要。下颌骨放射性骨坏死(ORN)是一个与放射相关的具有挑战性的问题,高达16%的头颈部癌症患者会发生ORN。改变的骨血管和口腔内的机会性感染有助于ORN的发展,导致一个不可阻挡的骨破坏过程,不遵循正常的愈合事件顺序。早期ORN通常使用抗生素、局部伤口护理和高压氧(HBO)治疗。晚期ORN需要手术切除,并用健康的非辐射组织进行重建。这一疾病过程的成功管理需要增强识别有ORN风险的患者的能力,监测保守治疗的有效性,并改进术前计划以确保在切除时有明确的切缘。然而,目前还没有一个标准化的、客观的ORN分期和监测系统。动态增强磁共振成像(DCE-MRI)是一种临床可用的定量成像方法,在头颈部实体肿瘤的研究中越来越多地用于评估微血管功能。在我们的机构,DCE-MRI被集成到一个多模式临床算法中,旨在改善头颈部肿瘤的诊断、分期和肿瘤监测。DCE-MRI可以发现与骨愈合、坏死和转移相关的骨血管改变,具有良好的空间分辨率。我们假设DCE-MRI可以用来检测放射后骨血管的变化,以监测ORN的临床进展和对治疗的反应。为了验证这一假设,我们将评估DCE-MRI在识别有风险的患者方面的潜力。 下颌骨ORN,监测保守治疗的反应,并确定进展性下颌ORN的范围,以帮助手术计划。这项建议的成功完成有可能使下颌骨ORN的诊断和治疗发生革命性的变化。临床医生将首次能够识别有ORN风险的患者,并适当地管理放射治疗后的护理。目前采用的保守措施的有效性可以用客观的方法来测试,改进的术前计划可以降低由于残留的骨质破坏而导致的手术失败的比率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN Y LAI其他文献

STEPHEN Y LAI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN Y LAI', 18)}}的其他基金

Development of miR-27a* for the Treatment of Head and Neck Squamous Cell Carcinoma
开发 miR-27a* 用于治疗头颈鳞状细胞癌
  • 批准号:
    10752726
  • 财政年份:
    2023
  • 资助金额:
    $ 65.73万
  • 项目类别:
Quantification of cisplatin sensitivity and resistance using metabolic imaging and circulating tumor cell (CTC) biomarkers
使用代谢成像和循环肿瘤细胞 (CTC) 生物标志物量化顺铂敏感性和耐药性
  • 批准号:
    10518179
  • 财政年份:
    2022
  • 资助金额:
    $ 65.73万
  • 项目类别:
Quantification of cisplatin sensitivity and resistance using metabolic imaging and circulating tumor cell (CTC) biomarkers
使用代谢成像和循环肿瘤细胞 (CTC) 生物标志物量化顺铂敏感性和耐药性
  • 批准号:
    10707179
  • 财政年份:
    2022
  • 资助金额:
    $ 65.73万
  • 项目类别:
Radiosensitization of thyroid cancer by cancer cell specific reduction of gold ions
癌细胞特异性还原金离子对甲状腺癌的放射增敏作用
  • 批准号:
    10569671
  • 财政年份:
    2022
  • 资助金额:
    $ 65.73万
  • 项目类别:
Radiosensitization of thyroid cancer by cancer cell specific reduction of gold ions
癌细胞特异性还原金离子对甲状腺癌的放射增敏作用
  • 批准号:
    10372483
  • 财政年份:
    2022
  • 资助金额:
    $ 65.73万
  • 项目类别:
Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Establish Objective Clinical Outcome Measures for Mandibular Osteoradionecrosis
使用动态对比增强磁共振成像 (DCE-MRI) 建立下颌放射性骨坏死的客观临床结果测量
  • 批准号:
    9894640
  • 财政年份:
    2016
  • 资助金额:
    $ 65.73万
  • 项目类别:
Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Establish Objective Clinical Outcome Measures for Mandibular Osteoradionecrosis
使用动态对比增强磁共振成像 (DCE-MRI) 建立下颌放射性骨坏死的客观临床结果测量
  • 批准号:
    10086515
  • 财政年份:
    2016
  • 资助金额:
    $ 65.73万
  • 项目类别:
Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Establish Objective Clinical Outcome Measures for Mandibular Osteoradionecrosis
使用动态对比增强磁共振成像 (DCE-MRI) 建立下颌放射性骨坏死的客观临床结果测量
  • 批准号:
    9135823
  • 财政年份:
    2015
  • 资助金额:
    $ 65.73万
  • 项目类别:
Optimizing Radiosensitization in Anaplastic Thyroid Cancer with Metabolic Imaging
通过代谢成像优化甲状腺未分化癌的放射增敏
  • 批准号:
    8879068
  • 财政年份:
    2014
  • 资助金额:
    $ 65.73万
  • 项目类别:
Regulation of Invasion and Metastasis by HIF-1 Oral Squamous Cell Carcinoma
HIF-1对口腔鳞状细胞癌侵袭和转移的调控
  • 批准号:
    7917401
  • 财政年份:
    2006
  • 资助金额:
    $ 65.73万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.73万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 65.73万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 65.73万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 65.73万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 65.73万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 65.73万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 65.73万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 65.73万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 65.73万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 65.73万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了