Infrared laser spectroscopy of mass-separated metabolites
质量分离代谢物的红外激光光谱
基本信息
- 批准号:9215689
- 负责人:
- 金额:$ 22.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBenchmarkingBiochemicalBioinformaticsBiologicalBiological MarkersChemicalsColon CarcinomaComplexComplex MixturesComputational algorithmCouplingCustomDataDatabasesDevelopmentDiagnosticDiseaseFingerprintFreezingGoalsGoldIonsLasersLinkLiquid ChromatographyMass Spectrum AnalysisMeasurementMethodologyMethodsMolecularMolecular ConformationPattern RecognitionPreventionProcessProteomicsResearchResolutionSamplingSpectrum AnalysisStructureTechniquesTechnologyTrainingabsorptionbasebiomarker discoverycomplex biological systemscryogenicsexperimental studyhigh throughput analysisinfrared spectroscopyinnovationinsightinstrumentationmetabolomicsmolecular dynamicsnew technologynovelpublic health relevancequantumtandem mass spectrometrytoolvibration
项目摘要
DESCRIPTION (provided by applicant): Challenge: Developments of enabling technologies underpin continuing advances in biomolecular research. For instance, mass spectrometry (MS)-based sequencing techniques have spurned proteomics research in the past decade. Currently, there is no "gold standard" technique in metabolomics that allows a routine characterization of the thousands of constituents contained in these samples. NMR is limited to the more abundant analytes due to sensitivity issues. On the other hand, MS is typically capable of detecting many more features, but is often not able to structurally characterize these molecules. Rationale: By coupling tunable infrared (IR) lasers to mass spectrometry instrumentation, the IR spectra of mass- separated ions can be recorded. IR laser spectroscopy of ions combines the high sensitivity and ability to analyze complex mixtures of MS with the enhanced structural information from vibrational spectroscopy. The technique hence allows a chemical elucidation of many unknowns based on diagnostic vibrations and IR spectral fingerprints. Aim 1: Development of cryogenic mass spectrometry and multiplexed IR spectroscopy. In order to make IR spectroscopy a useful bioanalytical tool for biomolecular ions, it is essential that the IR
spectra of analytes are well- resolved, and thus distinguishable, and that multiple analytes in mixtures can be probed simultaneously in a multiplexed fashion. We propose to develop a custom-built, cryogenic linear ion trap, where the ions are tagged with weakly-bound molecules (e.g. N2), which are selectively detached upon resonant IR absorption. Aim 2: IR spectroscopy of mass-separated metabolites. Our application of IR spectroscopy of biomolecules focuses on metabolites, where we expect the technique to have most potential. Control experiments on standard metabolites will establish how many analytes can be successfully probed in a multiplexed approach. The methodology will then be applied to selected metabolite samples from colon cancer studies, which have previously been analyzed by high- throughput liquid chromatography and high-resolution mass spectrometry. Aim 3: Structural elucidation of unknown metabolites by comparison to computed IR spectra and bioinformatics approaches. The ultimate goal of this proposal is to chemically characterize unknown biomarkers that cannot be identified by current MS approaches. This requires a comparison of the experimental data for each analyte, namely its mass and its IR spectrum, to putative matches from metabolite databases. The IR spectra of known standards (from aim 2) will serve as a training set and as a benchmark for implementing this identification methodology. Innovation and Impact: The techniques developed here are expected to have the largest impact in global metabolomics, where current tandem mass spectrometry methodologies limit the number of constituents that can be identified in these mixtures. We expect the enhanced structural information from vibrational spectroscopy to yield many new insights in biomarker discovery.
描述(由申请人提供):挑战:使能技术的发展支撑了生物分子研究的持续进步。例如,在过去的十年里,基于质谱(MS)的测序技术已经抛弃了蛋白质组学研究。目前,在代谢组学中还没有“金标准”技术,可以对这些样品中含有的数千种成分进行常规表征。由于灵敏度问题,核磁共振仅限于更丰富的分析物。另一方面,质谱通常能够检测到更多的特征,但通常无法对这些分子进行结构表征。原理:通过耦合可调谐红外(IR)激光器到质谱仪器,可以记录质量分离离子的红外光谱。红外激光离子光谱结合了高灵敏度和分析复杂混合质谱的能力与振动光谱增强的结构信息。因此,该技术允许基于诊断振动和红外光谱指纹的许多未知的化学解释。目的1:低温质谱和多路红外光谱的发展。为了使红外光谱技术成为一种有用的生物分子离子分析工具,红外光谱技术的应用至关重要
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Making Mass Spectrometry See the Light: The Promises and Challenges of Cryogenic Infrared Ion Spectroscopy as a Bioanalytical Technique.
- DOI:10.1007/s13361-016-1366-4
- 发表时间:2016-05
- 期刊:
- 影响因子:3.2
- 作者:Cismesia AP;Bailey LS;Bell MR;Tesler LF;Polfer NC
- 通讯作者:Polfer NC
ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost.
- DOI:10.1039/c6sc05720a
- 发表时间:2017-04-01
- 期刊:
- 影响因子:8.4
- 作者:Smith JS;Isayev O;Roitberg AE
- 通讯作者:Roitberg AE
Effects of ESI conditions on kinetic trapping of the solution-phase protonation isomer of p-aminobenzoic acid in the gas phase.
- DOI:10.1016/j.ijms.2016.09.022
- 发表时间:2017-07
- 期刊:
- 影响因子:1.8
- 作者:Patrick AL;Cismesia AP;Tesler LF;Polfer NC
- 通讯作者:Polfer NC
Operation and Performance of a Mass-Selective Cryogenic Linear Ion Trap.
- DOI:10.1007/s13361-018-2026-7
- 发表时间:2018-11
- 期刊:
- 影响因子:3.2
- 作者:Tesler LF;Cismesia AP;Bell MR;Bailey LS;Polfer NC
- 通讯作者:Polfer NC
ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules.
- DOI:10.1038/sdata.2017.193
- 发表时间:2017-12-19
- 期刊:
- 影响因子:9.8
- 作者:Smith JS;Isayev O;Roitberg AE
- 通讯作者:Roitberg AE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADRIAN ENRIQUE ROITBERG其他文献
ADRIAN ENRIQUE ROITBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADRIAN ENRIQUE ROITBERG', 18)}}的其他基金
Mechanism of Trypanosoma Cruzi's Transsialidase in Chagas' Disease
克鲁兹锥虫转唾液酸酶在恰加斯病中的作用机制
- 批准号:
7533799 - 财政年份:2008
- 资助金额:
$ 22.27万 - 项目类别:
Mechanism of Trypanosoma Cruzi's Transsialidase in Chagas' Disease
克鲁兹锥虫转唾液酸酶在恰加斯病中的作用机制
- 批准号:
8099410 - 财政年份:2008
- 资助金额:
$ 22.27万 - 项目类别:
MODELING STUDIES OF BIOMOLECULAR SYSTEMS AND NANOMATERIALS
生物分子系统和纳米材料的建模研究
- 批准号:
7723151 - 财政年份:2008
- 资助金额:
$ 22.27万 - 项目类别:
Mechanism of Trypanosoma Cruzi's Transsialidase in Chagas' Disease
克鲁兹锥虫转唾液酸酶在恰加斯病中的作用机制
- 批准号:
7665461 - 财政年份:2008
- 资助金额:
$ 22.27万 - 项目类别:
Mechanism of Trypanosoma Cruzi's Transsialidase in Chagas' Disease
克鲁兹锥虫转唾液酸酶在恰加斯病中的作用机制
- 批准号:
7898547 - 财政年份:2008
- 资助金额:
$ 22.27万 - 项目类别:
MODELING STUDIES OF BIOMOLECULAR SYSTEMS AND NANOMATERIALS
生物分子系统和纳米材料的建模研究
- 批准号:
7601339 - 财政年份:2007
- 资助金额:
$ 22.27万 - 项目类别:
MODELING STUDIES OF BIOMOLECULAR SYSTEMS AND NANOMATERIALS
生物分子系统和纳米材料的建模研究
- 批准号:
7181769 - 财政年份:2004
- 资助金额:
$ 22.27万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Research Grant