A vascular tree topology inspired platform to compute intracranial blood flow (tree CFD)
受血管树拓扑启发的计算颅内血流量的平台(树 CFD)
基本信息
- 批准号:9388198
- 负责人:
- 金额:$ 23.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-07-01
- 项目状态:已结题
- 来源:
- 关键词:AddressAgreementAnatomyAneurysmAngiographyAngioplastyBenefits and RisksBlood CirculationBlood PressureBlood VesselsBlood flowBrainCaliberCerebrovascular CirculationCerebrovascular DisordersCerebrovascular systemCerebrumClinicClinicalCommunitiesComputer HardwareComputersDataData CollectionDevicesDiseaseEquationGenerationsHemorrhageHourImageInfarctionInterventionLiquid substanceMagnetic ResonanceMeasurementMeasuresMedical ImagingMethodsMissionModelingNational Institute of Neurological Disorders and StrokeOperative Surgical ProceduresOutcomePatientsPatternPostoperative PeriodProblem FormulationsProceduresProcessPublic HealthResearchResearch MethodologyResidual stateResolutionRiskRisk FactorsSiteSpeedStenosisStentsSurgeonTechniquesTechnologyTestingTimeTreatment outcomeTreesValidationVenousWorkbaseblood flow measurementcerebral hemodynamicscerebrovasculardensitydesignhealthy volunteerhemodynamicsimprovedin vivoindexingindividual patientinnovationinsightinterestneurovascularnovelnovel therapeuticsperformance testsprospectiveprototypereconstructionremediationshear stresssimulation
项目摘要
Summary. There is a growing interest in the neurosurgical community to assess hemodynamic risk factors that
either remain or are eliminated after surgery that cannot be measured in vivo, but can be computed. Current
CFD simulations merely address short segments, but are unable compute blood flow throughout the entire
vascular tree. There is an unaddressed need to compute hemodynamic risk factors before and after
endovascular interventions throughout the entire cerebral circulation. Whole-brain CFD flow simulation has not
been accomplished before because of two unsolved problems.
Problem 1. Current blood vessel segmentation methods would require weeks to reconstruct the entire
vascular tree from angiography, which is clinically impractical.
Problem 2. Even if the computational meshes could be constructed for the entire arterial tree, existing
computers require excessive CPU time to solve the many embedded equations.
These two problems are now solved by two innovations:
Innovation 1. A new vessel segmentation pipeline largely automates the vessel reconstruction process
and problem formulation. Segmentation with our current (not yet optimized) workflow takes less than 1 hour.
Innovation 2. An image-based mesh generation technique generates a computer representation of the
entire arterial tree from medical images with little or no need for technician intervention. The parametric mesh
conforms to vessel centerlines to generate flow-dominated meshes. This enables the fast and reliable
computation of hemodynamic metrics at a fraction of the mesh resolution needed in unstructured grids.
Our preliminary work demonstrates that automatic tree segmentation and dynamic 3D CFD simulation of
the entire arterial tree is attainable with regular desktop computer hardware. Because vascular modeling in
TreeCFD is based on non-invasive magnetic resonance methods, testing of TreeCFD can be performed with
both healthy volunteers and patients and will be achieved in two aims: AIM 1. (With healthy volunteers) Test
the performance of the automated platform for whole-tree cerebral hemodynamics with microcirculatory
closure. Validate accuracy of vascular reconstruction and flow quantification. AIM 2. (With stenosis patients.)
Use TreeCFD to characterize the cerebral blood flow patterns before and after endovascular interventions and
compare changes in all major hemodynamic indices of disturbed blood flow.
Benefits. Availability of automated (real time) CFD simulations will provide surgeons with indicators for
potential benefits and risks associated with endovascular procedures for individual patients. Tighter integration
of imaging, endovascular interventions, and rigorous hemodynamic analysis will also eliminate barriers
between surgeons and biomedical device designers aiming for better outcomes for cerebrovascular diseases.
摘要神经外科界对评估血流动力学风险因素的兴趣越来越大,
在手术后保留或消除,这些不能在体内测量,但可以计算。电流
CFD模拟仅处理短段,但无法计算整个血流
维管树有一个未解决的需要,计算血流动力学风险因素前后
在整个脑循环中进行血管内介入。全脑CFD流动模拟还没有
这是因为两个尚未解决的问题。
问题1.目前的血管分割方法需要数周的时间来重建整个血管。
从血管造影术中提取血管树,这在临床上是不切实际的。
问题2.即使可以为整个动脉树构建计算网格,现有的
计算机需要过多的CPU时间来求解许多嵌入式方程。
这两个问题现在通过两项创新得到解决:
创新1.新的血管分割管道在很大程度上自动化了血管重建过程
和问题表述。使用我们当前(尚未优化)的工作流程进行分割所需时间不到1小时。
创新2.一种基于图像的网格生成技术,
从医学图像中提取整个动脉树,几乎不需要或不需要技术人员干预。参数网格
符合血管中心线以生成流动主导的网格。这使得快速和可靠的
在非结构化网格中所需的网格分辨率的一小部分上计算血液动力学指标。
我们的初步工作表明,自动树木分割和动态三维CFD模拟,
整个动脉树可以用常规的台式计算机硬件获得。因为血管建模在
TreeCFD基于非侵入性磁共振方法,可以使用
健康志愿者和患者,并将实现两个目标:目的1。(With健康志愿者)测试
微循环全树脑血流动力学自动化平台的性能
结束保证血管重建和血流定量的准确性。AIM 2. (With狭窄患者)。
使用TreeCFD表征血管内介入治疗前后的脑血流模式,
比较受干扰血流的所有主要血流动力学指标的变化。
效益自动(真实的时间)CFD模拟的可用性将为外科医生提供以下指标:
个体患者与血管内手术相关的潜在受益和风险。更紧密的集成
成像、血管内介入和严格的血流动力学分析也将消除障碍
外科医生和生物医学设备设计者之间的合作,旨在改善脑血管疾病的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Alaraj其他文献
Ali Alaraj的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
- 批准号:
22KJ0334 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
- 批准号:
2410236 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
- 批准号:
900240 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Collaborative R&D
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
- 批准号:
23H00770 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
- 批准号:
2346114 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
- 批准号:
10828588 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
- 批准号:
MR/X029301/1 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
- 批准号:
2234506 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Standard Grant