Methods to elucidate quantitative phosphorylation dynamics in the IGF-1 signaling pathway
阐明 IGF-1 信号通路中定量磷酸化动力学的方法
基本信息
- 批准号:9256831
- 负责人:
- 金额:$ 3.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-16 至 2018-12-15
- 项目状态:已结题
- 来源:
- 关键词:AKT1 geneAlgorithmsAlzheimer&aposs DiseaseAmino Acid SequenceBenchmarkingCatalogsCellsCharacteristicsClinical TrialsCommunitiesCoupledDNA sequencingDataData AnalysesDiabetes MellitusDiagnosticDiseaseEventExclusionFRAP1 geneHuman Cell LineIndividualInsulin-Like Growth Factor IInsulin-Like-Growth Factor I ReceptorIonsIsomerismLabelLibrariesLinkMCF10A cellsMCF7 cellMalignant NeoplasmsMass Spectrum AnalysisMeasurementMethodsMonitorMutationObesityOccupationsPathway interactionsPeptidesPharmaceutical PreparationsPhenotypePhosphopeptidesPhosphorylationPhosphorylation SitePhosphotransferasesPlant RootsProcessProteinsProteomicsReceptor SignalingReproducibilityResearch PersonnelSamplingScanningSignal PathwaySignal TransductionSiteSoftware ToolsStimulusTechniquesTechnologyTestingTimeValidationbasecell typecomputerized toolsdata acquisitiondesignexperimental studyhuman diseaseimprovedmalignant breast neoplasmmembermutantnovel strategiesphosphoproteomicstandem mass spectrometrytooltranscriptome sequencing
项目摘要
PROJECT SUMMARY
Phosphorylation related perturbations in cellular signaling pathways are at the root of many human diseases.
Protein phosphorylation cannot be observed using DNA or RNA sequencing, which means it is extremely
important to develop proteomic technologies and methods that reproducibly and accurately quantify
phosphorylation events. Tandem mass spectrometry currently provides an excellent platform to deeply catalog
the sites of phosphorylation with respect to disease. However, accurate reproducibility and quantitation are
hampered by several acquisition tradeoffs made to provide higher identification rates of low-abundant
molecules. I propose an approach to improve quantitative reproducibility in phosphorylation experiments,
specifically with regard to positional phosphorylation isomers. I intend to build computational tools that
separate the tasks of peptide identification and site localization in proteomic workflows. I will perform site
localization using several metrics calculated with entire fragment ion profiles made up of multiple scans,
instead of current methods that only use a single scan to localize phosphorylation sites. This should
significantly improve accuracy and reproducibility. I will apply this technique to monitor phosphorylation events
in the IGF-1 signaling pathway of human cell lines with respect to various stimuli to help elucidate specific
networking characteristics between members of that pathway. This project will also greatly benefit the signaling
community by providing tools and methods to more reliably discover quantitative changes in the
phosphoproteome.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Chih-Seng Searle其他文献
Brian Chih-Seng Searle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Chih-Seng Searle', 18)}}的其他基金
Investigating the functional impact of genetic variants in the human proteome
研究人类蛋白质组中遗传变异的功能影响
- 批准号:
10715585 - 财政年份:2023
- 资助金额:
$ 3.8万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Research Grant