Quantitative molecular and cellular MRI of hepatocyte transplantation

肝细胞移植的定量分子和细胞MRI

基本信息

  • 批准号:
    9147584
  • 负责人:
  • 金额:
    $ 49.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-23 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): For many severe liver diseases, the only effective treatment is liver transplantation. Unfortunately, due to the shortage of available donor organs, or the patient's age, liver transplantation is not available to all patients. Hepatocyte transplantation (HTx) is an alternative, experimental treatment, with limited long term success in humans. A major unsolved question is how can we dynamically monitor and quantify cell transplantation in HTx to help improve HTx and to closely monitor clinical implementation? To answer this question, we combine an innovative molecular and cellular MRI approach, with machine learning and computer vision, to non-invasively quantify cell engraftment and long term engraftment and repopulation (LTER) in the liver following HTx. Using a mouse model that facilitates LTER following HTx, we will use this combined approach to quantify transplanted cells in the liver at Days 1 and 7 after HTx, reflecting the timings of initial cell delivery (Day 1) and actual cellular engraftment in the tissue (Day 7). Then, we will measure LTER of these cells in the liver 30 - 90 days post-transplant, making innovative use of Eovist, an FDA approved MRI contrast agent specific for healthy hepatocytes. These experiments will evaluate mouse donor cells, as well as pig primary hepatocytes and pig embryonic stem cell-derived hepatocyte cell line. This transformative work will be the first study to achieve this level of quantification wit molecular and cellular MRI of regenerative medicine, in any animal model. Additionally, we will test pattern recognition algorithms aimed at predicting the outcome of LTER, at an early stage. The capability to predict LTER outcome would be paradigm shifting as it would enable physicians to consider additional HTx regimens or second line treatments if HTx fails. This is seldom possible. Though this project will be developed on mice, clinical translation of the imaging protocol would be straightforward because the exact imaging and data analysis scheme that we use to measure HTx in mouse, can be used to measure HTx in humans. Eovist is FDA approved for use in humans with liver disease, and MRI-based cell tracking of iron labeled cells is in clinical trials. Our preliminary data strongly suggests that MRI and data analysis can discriminate single cells at 200 µm resolution, meaning the MRI could likely be performed on any high field human MRI system. Additionally, the discovery that a stem cell-derived hepatocyte achieved even partial LTER would be extremely encouraging for exploring human and/or pig stem cell-derived hepatocytes for human use, because these cells can potentially alleviate the crucial issue of poor cell supply, similar to progress seen in pig islet transplant. The proposed research takes a multidisciplinary approach with expertise in hepatocyte transplant and biology, molecular imaging, machine learning/computer vision, and mouse liver disease models. Collaboration among the researchers is ongoing with extensive preliminary data across all aspects of the proposed work.
 描述(申请人提供):对于许多严重的肝脏疾病,唯一有效的治疗方法是肝移植。不幸的是,由于可用的供体器官短缺,或患者的年龄,肝移植并不适用于所有患者。肝细胞移植(HTx)是一种替代的实验性治疗方法,在人类中的长期成功有限。一个尚未解决的主要问题是,我们如何动态监测和量化HTx中的细胞移植,以帮助改善HTx并密切监测临床实施? 为了回答这个问题,我们将创新的分子和细胞MRI方法与机器学习和计算机视觉相结合,以非侵入性方式量化HTx后肝脏中的细胞植入和长期植入和再增殖(LTER)。使用促进HTx后LTER的小鼠模型,我们将使用这种组合方法来量化HTx后第1天和第7天肝脏中的移植细胞,反映初始细胞递送的时间(第1天), 组织中的实际细胞植入(第7天)。然后,我们将在移植后30 - 90天测量肝脏中这些细胞的LTER,创新地使用Eovist,这是FDA批准的针对健康肝细胞的MRI造影剂。这些实验将评价小鼠供体细胞以及猪原代肝细胞和猪胚胎干细胞衍生的肝细胞系。 这项变革性的工作将是第一项在任何动物模型中实现再生医学分子和细胞MRI定量水平的研究。此外,我们将在早期阶段测试旨在预测LTER结果的模式识别算法。预测LTER结局的能力将是范式转变,因为如果HTx失败,它将使医生能够考虑额外的HTx方案或二线治疗。这是很少可能的。 虽然该项目将在小鼠上开发,但成像协议的临床翻译将是直接的,因为我们用于测量小鼠HTx的确切成像和数据分析方案可用于测量人类HTx。Eovist是FDA批准用于人类肝脏疾病,和基于MRI的铁标记细胞的细胞跟踪是在临床试验中。我们的初步数据强烈表明,MRI和数据分析可以在200 µm分辨率下区分单细胞,这意味着MRI可能在任何高场人类MRI系统上进行。此外,干细胞衍生的肝细胞实现甚至部分LTER的发现对于探索人和/或猪干细胞衍生的肝细胞用于人用途将是极其令人鼓舞的,因为这些细胞可以潜在地缓解细胞供应差的关键问题,类似于在猪胰岛移植中看到的进展。 拟议的研究采用多学科方法,具有肝细胞移植和生物学,分子成像,机器学习/计算机视觉和小鼠肝脏疾病模型的专业知识。研究人员之间的合作正在进行中,在拟议工作的各个方面都有广泛的初步数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Shapiro其他文献

Erik Shapiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Shapiro', 18)}}的其他基金

CRISPRa induced expression of native MRI reporter proteins
CRISPRa 诱导天然 MRI 报告蛋白的表达
  • 批准号:
    10287598
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
Evaluation of tantalum oxide nanoparticles for in vivo X-ray computed tomography evaluation of implantable biomaterials
氧化钽纳米颗粒用于植入式生物材料体内 X 射线计算机断层扫描评估的评估
  • 批准号:
    10326392
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
CRISPRa induced expression of native MRI reporter proteins
CRISPRa 诱导天然 MRI 报告蛋白的表达
  • 批准号:
    10482409
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
Evaluation of tantalum oxide nanoparticles for in vivo X-ray computed tomography evaluation of implantable biomaterials
氧化钽纳米颗粒用于植入式生物材料体内 X 射线计算机断层扫描评估的评估
  • 批准号:
    10548861
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
Quantitative molecular and cellular MRI of hepatocyte transplantation
肝细胞移植的定量分子和细胞MRI
  • 批准号:
    9528581
  • 财政年份:
    2015
  • 资助金额:
    $ 49.76万
  • 项目类别:
Quantitative molecular and cellular MRI of hepatocyte transplantation
肝细胞移植的定量分子和细胞MRI
  • 批准号:
    9006872
  • 财政年份:
    2015
  • 资助金额:
    $ 49.76万
  • 项目类别:
Quantitative molecular and cellular MRI of hepatocyte transplantation
肝细胞移植的定量分子和细胞MRI
  • 批准号:
    9313889
  • 财政年份:
    2015
  • 资助金额:
    $ 49.76万
  • 项目类别:
(PQC5) MRI of magnetically labeled immune/stem cells for early tumor detection
(PQC5) 磁性标记免疫/干细胞的 MRI 用于早期肿瘤检测
  • 批准号:
    8686986
  • 财政年份:
    2014
  • 资助金额:
    $ 49.76万
  • 项目类别:
MRI Contrast Agents for In vivo Monitoring of Stem Cell Differentiation
用于干细胞分化体内监测的 MRI 造影剂
  • 批准号:
    8858631
  • 财政年份:
    2014
  • 资助金额:
    $ 49.76万
  • 项目类别:
MRI Contrast Agents for In vivo Monitoring of Stem Cell Differentiation
用于干细胞分化体内监测的 MRI 造影剂
  • 批准号:
    8768980
  • 财政年份:
    2014
  • 资助金额:
    $ 49.76万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了