Quantitative Image Informatics for Cancer Research (QIICR)

癌症研究定量图像信息学 (QIICR)

基本信息

  • 批准号:
    9134081
  • 负责人:
  • 金额:
    $ 66.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-04 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Imaging has enormous untapped potential to improve cancer research through software to extract and process morphometric and functional biomarkers. In the era of non-cytotoxic treatment agents, multi- modality image-guided ablative therapies and rapidly evolving computational resources, quantitative imaging software can be transformative in enabling minimally invasive, objective and reproducible evaluation of cancer treatment response. Post-processing algorithms are integral to high-throughput analysis and fine- grained differentiation of multiple molecular targets. Software tools used for such analyses must be robust and validated across a range of datasets collected for multiple subjects, timepoints and institutions. Ensuring the validity of this software requires unambiguous specification of analysis protocols, documentation of the analysis results, and clear guidelines for their interpretation. Yet cancer research data does not exist in formats that facilitate advancement of quantitative analysis and there is lack of an infrastructure to support common data exchange and method sharing. We therefore propose to develop and disseminate interoperable image informatics platform for development of software tools for quantitative imaging biomarker discovery. This platform will enable archival, organization, retrieval, dissemination of the data produced by the novel analysis tools and performance evaluation of quantitative analysis methods. Its functionality will be defined by the needs of the active QIN research projects in quantitative imaging biomarker development for prostate adenocarcinoma, head and neck cancer and glioblastoma multiforme. The infrastructure will be based on 3D Slicer, an NIH funded open source platform for image analysis and visualization, and will be accompanied by sample data and step-by-step documentation. We will (1) develop software tools encapsulating analysis and data organization workflows for the specific cancer imaging research applications; (2) implement support for interoperable open formats accepted in the community to enable dissemination and sharing of the analysis results; (3) develop interfaces to community cancer imaging repositories to enable archival and dissemination of the analysis results. RELEVANCE: This project will develop the informatics infrastructure for dissemination of image analysis technology and sharing of the analysis results and validation data. This will lead to improved traceability of the analysis and streamlined multi-site evaluation of imaging biomarkers, ultimately reducing the development time and facilitating the approval process.
描述(由申请人提供):成像具有巨大的未开发潜力,通过软件提取和处理形态和功能生物标志物来改善癌症研究。在非细胞毒性治疗剂、多模态图像引导消融治疗和快速发展的计算资源的时代,定量成像软件可以在实现癌症治疗反应的微创、客观和可再现评价方面具有变革性。后处理算法对于多个分子靶标的高通量分析和细粒度区分是不可或缺的。用于此类分析的软件工具必须是稳健的,并在为多个受试者、时间点和机构收集的一系列数据集上得到验证。确保该软件的有效性需要明确的分析方案规范,分析结果的文件,以及明确的解释指南。然而,癌症研究数据并不以促进定量分析的形式存在,并且缺乏支持共同数据交换和方法共享的基础设施。因此,我们建议开发和传播可互操作的图像信息学平台,用于开发定量成像生物标志物发现的软件工具。该平台将能够对新分析工具产生的数据进行存档、组织、检索和传播,并对定量分析方法进行绩效评价。其功能将由活跃的QIN研究项目在前列腺腺癌、头颈癌和多形性胶质母细胞瘤的定量成像生物标志物开发方面的需求来定义。该基础设施将基于3D Slicer,这是一个由NIH资助的用于图像分析和可视化的开源平台,并将附带样本数据和分步文档。我们会(1)为特定的癌症影像研究应用开发软件工具,以整合分析和数据整理工作流程;(2)支援社区接受的可互用开放格式,以便发布和分享分析结果;(3)开发社区癌症影像储存库的界面,以便存档和发布分析结果。 相关性:该项目将开发信息学基础设施,以传播图像分析技术并分享分析结果和验证数据。这将提高分析的可追溯性,并简化成像生物标志物的多中心评估,最终减少开发时间并促进批准过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andriy Fedorov其他文献

Andriy Fedorov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andriy Fedorov', 18)}}的其他基金

Quantitative Image Informatics for Cancer Research (QIICR)
癌症研究定量图像信息学 (QIICR)
  • 批准号:
    8606944
  • 财政年份:
    2013
  • 资助金额:
    $ 66.89万
  • 项目类别:
Quantitative Image Informatics for Cancer Research (QIICR)
癌症研究定量图像信息学 (QIICR)
  • 批准号:
    9248771
  • 财政年份:
    2013
  • 资助金额:
    $ 66.89万
  • 项目类别:
Quantitative Image Informatics for Cancer Research (QIICR)
癌症研究定量图像信息学 (QIICR)
  • 批准号:
    8911287
  • 财政年份:
    2013
  • 资助金额:
    $ 66.89万
  • 项目类别:
Quantitative Image Informatics for Cancer Research (QIICR)
癌症研究定量图像信息学 (QIICR)
  • 批准号:
    8730104
  • 财政年份:
    2013
  • 资助金额:
    $ 66.89万
  • 项目类别:
A CASE STUDY OF USING TERAGRID FOR LARGE-SCALE MEDICAL IMAGE ANALYSIS
使用 teragrid 进行大规模医学图像分析的案例研究
  • 批准号:
    8364166
  • 财政年份:
    2011
  • 资助金额:
    $ 66.89万
  • 项目类别:
A CASE STUDY OF USING TERAGRID FOR LARGE-SCALE MEDICAL IMAGE ANALYSIS
使用 teragrid 进行大规模医学图像分析的案例研究
  • 批准号:
    8171746
  • 财政年份:
    2010
  • 资助金额:
    $ 66.89万
  • 项目类别:
A CASE STUDY OF USING TERAGRID FOR LARGE-SCALE MEDICAL IMAGE ANALYSIS
使用 teragrid 进行大规模医学图像分析的案例研究
  • 批准号:
    7956296
  • 财政年份:
    2009
  • 资助金额:
    $ 66.89万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.89万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 66.89万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 66.89万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 66.89万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 66.89万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 66.89万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 66.89万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 66.89万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 66.89万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 66.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了