MEMS Acoustic Tweezers for Micromanipulation of Living Cells
用于活细胞显微操作的 MEMS 声学镊子
基本信息
- 批准号:9803092
- 负责人:
- 金额:$ 33.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsBiochemicalBiologicalBiological AssayBiological TestingBiologyCaliberCellsCellular biologyComplexConsultationsDevelopmentDevelopmental BiologyDevicesDimensionsEmbryoEmbryonic DevelopmentEnvironmentFeedbackGenesGoalsImageLasersLipidsLiposomesLiquid substanceLocationMalignant NeoplasmsManualsMeasuresMechanical StressMechanicsMicrofluidicsMicromanipulationMicroscopyMicrospheresMolecular BiologyMovementOpticsOrganismOrganoidsPolystyrenesPrincipal InvestigatorPropertyProteinsRadiationResearchResearch PersonnelSamplingScanningSeriesShapesSignal TransductionSolidSpecimenSpottingsStimulusStretchingStructureTechnologyTemperatureTestingTimeTissuesTransducersTransfectionTransgenic OrganismsTumor BiologyUltrasonicsWorkZebrafishbasechemotherapydensitydesignembryo cellexperimental studygene transplantation for gene therapygraspimagerinnovationinstrumentlaser tweezerlensmechanical forcemicromanipulatoroptical imagingparticlepressurereal-time imagesresponsesuccesstechnology developmenttooltumorigenic
项目摘要
Abstract
This research is to develop Fresnel-lens-based ultrasonic tweezers that can capture and manipulate living
tissue in three dimensional (3D) space on demand, very much like optical tweezers but with several orders of
magnitude stronger mechanical trapping force for a given temperature rise. The lab led by the Principal
Investigator (PI) recently demonstrated ultrasonic capture of microparticles (70 - 400 µm in diameter) in liquid
with a single Multi-foci Fresnel Transducer (MFT). The captured microparticle was moved on demand by
moving the MFT itself in 3D. Building on this success, this proposal will advance the transducer technology so
that a single MFT can capture and move particles or cells in 3D on demand with an electrical signal without the
need to move the transducer. This will benefit a wide range of biological researchers including those in
molecular, developmental and cellular biology.
Biological test experiments will be used to focus and validate the technology development. Our first specific
application of the ultrasonic tweezers will be to trap and hold living specimens too large for laser-trapping (e.g.,
zebrafish embryos and cancer-derived spheroids) using a MFT. These trapped multi-cellular structures will be
held free from mechanical contact for time-lapse microscopy, and will be distorted by the acoustic tweezers to
test the effects of altered physical forces on embryo and organoid development. These experiments require
trapping and tweezing forces large enough to change the shape of the embryo (far greater than the forces
possible with optical tweezers).
We will develop electrical controllability of the trapping location in 3D space so that the captured specimens
may be: (1) moved from one location to another, (2) stretched or compressed for the characterization of the
cell's elastic properties, (3) brought into contact with other cells or gene-containing liposomes. These will all be
performed under electrical command without the need to move the ultrasonic tweezers mechanically.
To optimize the development of ultrasonic tweezers as an enabling tool for biological experiments, two
biological labs (led by the co-Investigators) will participate in the research from the start. They will receive
successive versions of acoustic tweezers at the ends of the 6th, 18th, 30th, and 42nd month during the 4-year
research period, and will use them to conduct the proposed experiments with transgenic embryos, cell
spheroids and non-adherent circulating cells. The proposed biological experiments require manipulation of live
cells in a liquid environment without any damage caused by the holding device. Such contact-free manipulation
would be extremely difficult, if not impossible, without the proposed tweezers. The two biology labs will
participate actively in a synergistic advancement of the tweezers, performing the biological experiments, and
providing timely feedbacks, directing the PI's lab towards creating the most useful designs.
Since MFT focuses acoustic energy on a very small spot and is capable of delivering acoustic energy through
an intermediate solid, it can be incorporated into various microfluidic platforms for the management of cells,
liquids, particles and proteins. The MFT's electrical controllability on the location and direction of the trapping
force, combined with amenability of MFT being formed into an array, will allow the creation of complex
biochemical assays and/or biomedical treatments at high throughput. The MFT's unprecedented capability of
3D capture and on-demand manipulation of microparticles/cells (of tens - hundreds of microns in diameter) will
open up many new possibilities in cell study, gene transfection, juxtaposition and manipulation.
摘要
本研究旨在发展一种以菲涅尔透镜为基础的超音波镊子,
根据需要在三维(3D)空间中的组织,非常像光学镊子,但是具有几个数量级的
对于给定的温度上升,机械捕获力更强。由校长领导的实验室
研究者(PI)最近证明了液体中微粒(直径70 - 400 µm)的超声捕获
一个多焦点菲涅尔传感器(MFT)。捕获的微粒按需移动,
在3D中移动MFT本身。在此成功的基础上,该提案将推动传感器技术,
单个MFT可以根据需要用电信号捕获和移动3D中的颗粒或细胞,而无需
需要移动传感器。这将有利于广泛的生物研究人员,包括那些在
分子、发育和细胞生物学。
生物测试实验将用于聚焦和验证技术开发。我们的第一个具体
超声波镊子的应用将是捕获和保持对于激光捕获来说太大的活体样本(例如,
斑马鱼胚胎和癌症衍生的球状体)。这些被困的多细胞结构将被
保持不受机械接触,用于延时显微镜,并将被声镊扭曲,
测试改变的物理力对胚胎和类器官发育的影响。这些实验需要
捕获和镊子的力量足够大,以改变胚胎的形状(远远大于力
可能使用光学镊子)。
我们将开发三维空间中捕获位置的电气可控性,以便捕获的标本
可以是:(1)从一个位置移动到另一个位置,(2)拉伸或压缩,以表征
细胞的弹性,(3)与其他细胞或含有基因的脂质体接触。这些都将得到
在电指令下执行,而不需要机械地移动超声镊子。
为了优化超声镊子作为生物实验工具的发展,两个
生物实验室(由共同研究者领导)将从一开始就参与研究。他们将获得
在4年期间的第6、18、30和42个月末,
研究期间,并将使用它们进行转基因胚胎,细胞
球状体和非粘附循环细胞。拟议中的生物实验需要操纵活的
细胞在液体环境中,而没有任何由保持装置引起的损坏。这种无接触的操作
如果没有提议的镊子,这将是极其困难的,如果不是不可能的话。两个生物实验室将
积极参与镊子的协同进步,进行生物实验,
提供及时的反馈,指导PI的实验室创造最有用的设计。
由于MFT将声能聚焦在非常小的点上,并且能够通过
作为一种中间固体,它可以被结合到各种微流体平台中用于细胞的管理,
液体、颗粒和蛋白质。MFT对捕获位置和方向的电可控性
力,结合MFT形成阵列的顺从性,将允许创建复杂的
生物化学测定和/或生物医学处理。MFT前所未有的能力,
微粒/细胞(直径为数十-数百微米)的3D捕获和按需操作将
在细胞研究、基因转染、并置和操作方面开辟了许多新的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EUN SOK KIM其他文献
EUN SOK KIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EUN SOK KIM', 18)}}的其他基金
Damage-Free, Ultrasonic Cell Isolation from Retinal Pigment Epithelium (RPE) Monolayers
从视网膜色素上皮 (RPE) 单层中进行无损伤超声波细胞分离
- 批准号:
10717828 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Wearable, Always-on Stethoscope for Early Detection of Asthma Attack
用于早期检测哮喘发作的可穿戴、始终开启的听诊器
- 批准号:
10665806 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Wearable, Always-on Stethoscope for Early Detection of Asthma Attack
用于早期检测哮喘发作的可穿戴、始终开启的听诊器
- 批准号:
10501924 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
MEMS Acoustic Tweezers for Micromanipulation of Living Cells
用于活细胞显微操作的 MEMS 声学镊子
- 批准号:
10021674 - 财政年份:2019
- 资助金额:
$ 33.8万 - 项目类别:
MEMS Acoustic Tweezers for Micromanipulation of Living Cells
用于活细胞显微操作的 MEMS 声学镊子
- 批准号:
10245078 - 财政年份:2019
- 资助金额:
$ 33.8万 - 项目类别:
MEMS Acoustic Tweezers for Micromanipulation of Living Cells
用于活细胞显微操作的 MEMS 声学镊子
- 批准号:
10473728 - 财政年份:2019
- 资助金额:
$ 33.8万 - 项目类别:
Ultrasonic Neural Stimulation for Neuromodulation Therapeutics
用于神经调节治疗的超声神经刺激
- 批准号:
9524451 - 财政年份:2018
- 资助金额:
$ 33.8万 - 项目类别:
Ultrasonic Neural Stimulation for Neuromodulation Therapeutics
用于神经调节治疗的超声神经刺激
- 批准号:
9899986 - 财政年份:2018
- 资助金额:
$ 33.8万 - 项目类别:
On-Chip Protein Synthesis Based on Directional Droplet-Ejector Array
基于定向液滴喷射器阵列的芯片上蛋白质合成
- 批准号:
7938577 - 财政年份:2009
- 资助金额:
$ 33.8万 - 项目类别:
On-Chip Protein Synthesis Based on Directional Droplet-Ejector Array
基于定向液滴喷射器阵列的芯片上蛋白质合成
- 批准号:
7708805 - 财政年份:2009
- 资助金额:
$ 33.8万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Standard Grant