Perceptual sensitivity to anatomical background statistics in mammography
乳房X线照相术中对解剖背景统计的感知敏感性
基本信息
- 批准号:9804780
- 负责人:
- 金额:$ 19.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnatomyAppearanceBasic ScienceBreastBreast Cancer DetectionCancerousCategoriesClinicalCommunitiesComplexDataDatabasesDescriptorDetectionDevelopmentDevicesDiagnosisDiagnostic radiologic examinationDigital MammographyDiseaseDoseElementsEngineeringFrequenciesGaussian modelGoalsHandHumanImageIndividualInfrastructureKnowledgeLeadLesionMagnetic Resonance ImagingMammographic screeningMammographyMasksMedical ImagingMindModelingMotivationNoisePerceptionPhasePhysiologicalProbabilityProcessProductionPropertyPsychophysicsReadingResearchResolutionRoentgen RaysScientistStimulusStructureSumTestingTextureTranslatingVariantVisionVision researchVisualVisual PerceptionVisual system structureWeightWorkbasecontrast imagingdensitydesigndiagnostic accuracydigitalimprovedinstrumentationmalignant breast neoplasmpublic health relevancescreeningsignal processingstatisticstoolvision science
项目摘要
Project Summary/Abstract
It is well known that normal anatomy in a medical image can mask the presence of disease. However
this process is not well understood. Part of the problem is that we lack knowledge of the relevant statistical
descriptors that characterize perceptual effects of image statistics. While image acquisition noise is largely
characterized by its second moments (power-spectrum or covariance matrix), background anatomy has a
complex structure that requires higher-order statistics – and an understanding of their perceptual relevance
–to characterize fully. This is an important limitation because reading “through” this background is a critical
component of many clinical tasks. In a statistical sense, reading through the background means exploiting
redundancies in the presentation of normal anatomical structures for the purpose of isolating disease
processes. The need for background characterization is well recognized in screening mammography, our
focus, as screening mammography typically includes an assessment of the background via the BIRADS
density score. However, this score has limited utility as a statistical descriptor.
The basis for this project is to translate a successful approach from basic vision science to medical
imaging, in order to identify the relevant high-order statistical properties of medical images and their
perceptual impact. In this approach, a set of local image statistics (co-occurrence probabilities) are used to
build an ”alphabet” for the statistical structure of synthetic visual textures and their local features (such as
edges). Perceptual sensitivities to local features can be concisely characterized and modeled via this
alphabet, and it has been shown that sensitivity to these elements is matched to their informativeness in
natural scenes. This motivates our general approach, and many specifics of our research plan.
Our plan is to develop algorithms in Aim 1 that selectively alter (either increase or decrease) the co-occurrence statistics of mammograms, while retaining their general background appearance. The sub-aims
explore four strategies, building on a Fourier domain approach for which a proof-of-principle is in hand.
Then, Aim 2 will use these images to assess perceptual sensitivity. Aim 2A will develop the psychophysical
paradigm. Aims 2B-D will determine whether the principles identified in previous studies of synthetic
visual textures (sign-invariance, approximate scale-invariance, and quadratic combination) extend to
medical images, as this will enable a comprehensive yet concise description of perceptual sensitivity. We will
pursue these aims using a database of full-field digital mammograms.
The project is expected to yield a validated approach for modulating high-order statistical properties
of mammograms and baseline data of perceptual sensitivity to these modulations. These findings will
improve our understanding how normal anatomy impacts the statistical properties of screening
mammograms, and give us valuable baseline data on how the statistics of normal anatomy affect perception.
项目总结/摘要
众所周知,医学图像中的正常解剖结构可以掩盖疾病的存在。然而
这一过程还没有得到很好的理解。部分问题在于我们缺乏相关统计数据的知识,
描述符表征图像统计的感知效果。虽然图像采集噪声在很大程度上
其特征在于其二阶矩(功率谱或协方差矩阵),背景解剖具有
需要高阶统计的复杂结构-以及对它们的感知相关性的理解
- 充分描述。这是一个重要的限制,因为阅读“通过”这个背景是一个关键的
许多临床任务的组成部分。从统计学意义上讲,通过背景阅读意味着利用
为了隔离疾病,在正常解剖结构的表现上存在冗余
流程.背景表征的需要在筛查性乳腺X线摄影中得到了很好的认识,我们的
焦点,因为筛查性乳腺X线摄影通常包括通过BIRADS评估背景
密度分数然而,该分数作为统计描述符的效用有限。
这个项目的基础是将一种成功的方法从基础视觉科学转化为医学
成像,以便识别医学图像的相关高阶统计特性及其
知觉冲击在该方法中,使用一组局部图像统计(共现概率)来
为合成视觉纹理的统计结构及其局部特征(如
边缘)。对局部特征的感知敏感度可以通过这个来简明地表征和建模。
字母表,并且已经表明,对这些元素的敏感性与它们的信息量相匹配,
自然场景。这激发了我们的总体方法,以及我们研究计划的许多细节。
我们的计划是在目标1中开发算法,选择性地改变(增加或减少)乳房X线照片的共现统计数据,同时保留其一般背景外观。次级目标
探索四种策略,建立在傅立叶域方法的基础上,该方法的原理证明正在进行中。
然后,目标2将使用这些图像来评估感知灵敏度。目标2A将发展心理物理学
范例目的2B-D将确定在先前的合成药物研究中确定的原则是否适用。
视觉纹理(符号不变性,近似尺度不变性和二次组合)扩展到
医学图像,因为这将使得能够对感知灵敏度进行全面而简洁的描述。我们将
使用全视野数字乳房X线照片数据库来实现这些目标。
该项目预计将产生一个有效的方法来调制高阶统计特性
以及对这些调制的感知敏感度的基线数据。这些发现将
提高我们对正常解剖结构如何影响筛查统计特性的理解
乳房X光片,并为我们提供了关于正常解剖结构的统计数据如何影响感知的宝贵基线数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan D Victor其他文献
Developing and validating an isotrigon texture discrimination task using Amazon Mechanical Turk
- DOI:
10.1186/1471-2202-16-s1-p278 - 发表时间:
2015-12-04 - 期刊:
- 影响因子:2.300
- 作者:
John WG Seamons;Marconi S Barbosa;Jonathan D Victor;Dominique Coy;Ted Maddess - 通讯作者:
Ted Maddess
Jonathan D Victor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan D Victor', 18)}}的其他基金
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Research Grant