Mitochondrial injury interferes with endogenous renal repair in experimental renovascular disease
线粒体损伤干扰实验性肾血管疾病的内源性肾修复
基本信息
- 批准号:9805789
- 负责人:
- 金额:$ 11.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active Biological TransportAcute Renal Failure with Renal Papillary NecrosisAdoptedAdultAffectAnimal ModelApoptosisAttenuatedAwardCell physiologyCellsCharacteristicsChronicChronic Kidney FailureDataDeteriorationDevelopmentDietDiseaseEnd stage renal failureEnergy SupplyEpithelial CellsFamily suidaeFibrosisFunctional disorderFutureGoalsGrantHumanHyperlipidemiaImpairmentIncubatedIndividualInjuryInsulin ResistanceIschemiaK-Series Research Career ProgramsKidneyKidney DiseasesKidney FailureKnowledgeMagnetic Resonance ImagingMetabolicMetabolic syndromeMitochondriaModelingMusNational Institute of Diabetes and Digestive and Kidney DiseasesNatural regenerationObesityOrganellesOxidation-ReductionOxidative StressPatientsPeptidesPhenotypeProliferatingRecoveryRenal Artery StenosisRenal functionReperfusion InjuryResearch PersonnelSecondary HypertensionStructural defectStructureSystemTechniquesTestingThinnessTimeTubular formationaging populationcareercell injuryeffective interventionefficacy studyimprovedimproved functioningin vivoinnovationkidney fibrosiskidney repairkidney vascular structuremitochondrial dysfunctionmouse modelnovelnovel strategiesparacrinepreservationpreventprocess repeatabilityprogenitorprogramspublic health relevancerenal ischemiarepairedskillssolutetool
项目摘要
This application responds to PAR-18-103, “Small Grant Program for NIDDK K01/K08/K23 Recipients (R03)”,
which provides NIDDK-supported K01, K08, and K23 recipients support at some point during the final two
years of their K award, as they complete their transition to fully independent investigator status.
Renovascular disease (RVD) remains an important cause of renal failure in the aging population. My K08
studies showed that RVD in swine induces mitochondrial injury in tubular cells, but whether this reflects the
direct effect of ischemia and metabolic abnormalities on tubular cells or defective endogenous repair in the
post-stenotic kidney is unknown. RVD presents repeated episodes of insults mimicking acute kidney injury
(AKI) from which the kidney can normally recover. CD133+/CD24+ scattered tubular-like cells (STCs)
represent a dedifferentiated phenotype that can be adopted by surviving tubular epithelial cells. STCs can
proliferate and re-differentiate to replace lost neighboring cells. Our preliminary data suggest that RVD induces
structural and functional abnormalities in the swine STC mitochondria, but whether RVD impairs the recovery
potential of the kidney is unknown. Detecting STC dysfunction and elucidating the mechanisms responsible
may facilitate development of adequate tools to preserve their reparative potency and kidney vitality. The
hypothesis underlying this proposal is that RVD induces STC mitochondrial injury that impairs their integrity
and function, blunting their overall capacity to repair the kidney. We will employ novel swine models of renal
artery stenosis (RAS), metabolic syndrome (MetS), and MetS+RAS that closely mimic the ischemic and
metabolic components of human RVD. We will study the efficacy of STCs in a murine model of ischemia
reperfusion injury (IRI)-induced AKI. Delivery of swine STCs pretreated with mitochondria-targeted peptides
(MTPs) will establish the contribution of mitochondrial dysfunction to STC impairment in RVD. Two specific
aims will be pursued: Specific Aim 1 will test the hypothesis that RVD-induced STC mitochondrial injury
affects their integrity and function. STCs will be collected from pigs after 16 weeks of Lean or MetS diet with or
without RAS. Mitochondrial structure and function, as well as cellular injury and function will be assessed in
primary cultures of STCs with and without pre-incubation with MTPs. Specific Aim 2 will test the hypothesis
that RVD-induced mitochondrial injury in STCs blunts their capacity to repair in-vivo kidneys after AKI. AKI (IRI)
will be induced in mice, and STCs (from Specific Aim 1) or vehicle will be intra-arterially injected 3 days after
AKI. Renal function and fibrosis will be studied 2 weeks later. The proposed studies could greatly advance our
understanding the vulnerability of this repair system and contribute towards development of strategies for
improving the utility and efficacy of kidney repair in renal disease. This proposal is well aligned with the
applicant’s career goals and will provide him with unique skills from theoretical and experimental knowledge to
technical proficiency for his future independent career.
本申请响应PAR-18-103,“NIDDK K 01/K 08/K23接受者小额赠款计划(R 03)",
在最后两年的某个时间点,为NIDDK支持的K 01、K 08和K23接收者提供支持
年的K奖,因为他们完成了过渡到完全独立的调查员地位。
肾血管疾病(RVD)仍然是老年人群中肾衰竭的重要原因。我的K 08
研究表明,猪的RVD诱导肾小管细胞的线粒体损伤,但这是否反映了
缺血和代谢异常对肾小管细胞的直接影响或肾小管上皮细胞中有缺陷的内源性修复,
狭窄后肾脏未知。RVD表现出重复发作的类似急性肾损伤的损伤
(AKI)肾脏可以正常恢复CD 133 +/CD 24+散在小管样细胞(STC)
代表了可以被存活的肾小管上皮细胞采用的去分化表型。STC可以
增殖并重新分化以取代丢失的邻近细胞。我们的初步数据表明,RVD诱导
猪STC线粒体的结构和功能异常,但RVD是否会损害恢复
肾脏的潜力未知。检测STC功能障碍并阐明相关机制
可能有助于开发适当的工具,以保持其修复能力和肾脏活力。的
这一假设的基础是RVD诱导STC线粒体损伤,损害其完整性
和功能,削弱了他们修复肾脏的整体能力。我们将采用新的猪肾脏模型,
动脉狭窄(RAS)、代谢综合征(MetS)和MetS+RAS密切模拟缺血性和
人RVD的代谢成分。我们将研究STC在小鼠缺血模型中的功效
再灌注损伤(IRI)诱导的阿基。用靶向大肠杆菌的肽预处理的猪STC的递送
(MTP)将确定线粒体功能障碍对RVD中STC损伤的贡献。两个具体
具体目标1将检验RVD诱导STC线粒体损伤的假设,
影响其完整性和功能。将在16周的瘦肉或MetS饮食后从猪中收集STC,
没有RAS。线粒体结构和功能,以及细胞损伤和功能将在
用MTP预孵育和不用MTP预孵育的STC的原代培养物。具体目标2将检验假设
在STC中RVD诱导的线粒体损伤削弱了它们在阿基后修复体内肾脏的能力。阿基(IRI)
将在小鼠中诱导,并在3天后动脉内注射STC(来自特定目标1)或载体
阿基2周后研究肾功能和纤维化。拟议的研究可以大大促进我们的
了解这种修复系统的脆弱性,并有助于制定战略,
改善肾脏疾病中肾脏修复的效用和功效。这一建议与《
申请人的职业目标,并将为他提供独特的技能,从理论和实验知识,
为他未来的独立职业生涯提供技术支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alfonso Eirin其他文献
Alfonso Eirin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alfonso Eirin', 18)}}的其他基金
Role of mitochondrial microRNAs (mitomiRs) in endogenous renal repair
线粒体 microRNA (mitomiRs) 在内源性肾修复中的作用
- 批准号:
10583380 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Obesity-induced dysfunction of human MSC in peripheral microvascular repair
肥胖引起的人间充质干细胞在外周微血管修复中的功能障碍
- 批准号:
10516515 - 财政年份:2022
- 资助金额:
$ 11.93万 - 项目类别:
Obesity-induced dysfunction of human MSC in peripheral microvascular repair
肥胖引起的人间充质干细胞在外周微血管修复中的功能障碍
- 批准号:
10653231 - 财政年份:2022
- 资助金额:
$ 11.93万 - 项目类别:
Role of mitochondrial microRNAs (mitomiRs) in endogenous renal repair
线粒体 microRNA (mitomiRs) 在内源性肾修复中的作用
- 批准号:
10471652 - 财政年份:2021
- 资助金额:
$ 11.93万 - 项目类别:
A potential role for mitoprotection in preserving the kidney in metabolic syndrome and renal artery stenosis
有丝分裂保护在代谢综合征和肾动脉狭窄中保护肾脏的潜在作用
- 批准号:
9115146 - 财政年份:2015
- 资助金额:
$ 11.93万 - 项目类别:














{{item.name}}会员




