Manipulating the matrix to improve arteriovenous fistula patency
操纵基质以改善动静脉内瘘的通畅
基本信息
- 批准号:9806370
- 负责人:
- 金额:$ 65.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressArteriovenous fistulaBiologyBioreactorsBlood VesselsBlood flowCaliberCell ProliferationCell physiologyCellsClinicalDataDepositionEncapsulatedEnd stage renal failureEndotheliumEnvironmentExpenditureExtracellular MatrixFailureFemaleFistulaHealthcareHemodialysisHumanHyperplasiaIn VitroInterventionKnowledgeLeadMechanicsMediatingMethodsModelingMolecularMusNeedlesOperative Surgical ProceduresPatientsPhosphorylationProceduresPuncture procedureResourcesSex DifferencesSignal PathwaySignal TransductionSmooth Muscle MyocytesSystemTestingTimeTransforming Growth FactorsVeinsVenousWomanWorkbaseclinical translationhemodynamicshuman diseasehuman femalehuman maleimprovedin vivoin vivo Modelinhibitor/antagonistinnovationmalemenmonolayermouse modelnanoparticlenanoparticle deliverynovelnovel strategiesnovel therapeuticsresponseshear stresstool
项目摘要
Project Summary
A cornerstone of several common therapies for human diseases is the use of a vein as a conduit to
increase blood flow such as the arteriovenous fistula (AVF), the preferred access for hemodialysis. However,
the poor maturation and patency of AVF, especially in women and requiring additional re-do procedures and
surgery, reflects our imperfect understanding of the biology of venous remodeling that leads to successful
venous adaptation to the arterial environment. This knowledge gap creates an unmet need for novel
approaches to enhance venous remodeling and thereby to increase successful clinical use of venous conduits.
Successful venous remodeling requires deposition of extracellular matrix (ECM), enabling mechanical
strength to resist hemodialysis procedures that puncture the AVF wall with large bore needles 3 times a week.
Transforming growth factor (TGF)-β1 regulates numerous cellular functions, including ECM deposition and
remodeling. We present exciting new data that: 1) our innovative mouse model of AVF faithfully recapitulates
human AVF maturation including an ~1/3 failure rate; 2) female mice with AVF have diminished magnitudes of
shear stress compared to male mice; 3) we can manipulate TGF-β1 function in vivo and TGF-β1 is required for
successful early AVF remodeling; 4) in failed mouse AVF there is increased ECM, late TGF-β1 expression
and smad2/tak1 phosphorylation; 5) there is increased smad2/tak1 phosphorylation in human AVF surgically
removed for failure; 6) we developed an innovative nanoparticle tool to manipulate TGF-β1 signaling in vivo.
Our data suggest that surgical creation of a fistula stimulates early TGF-β1 activation via smad2/3
and/or tak1 phosphorylation that is critical for successful early venous adaptation and AVF maturation. We
hypothesize that exuberant late TGF-β1 activity results in excessive ECM deposition and neointimal
hyperplasia causing AVF failure. Reducing late TGF-β1 activity should reduce ECM deposition and neointimal
hyperplasia, thereby improving AVF patency. We will use our innovative in vivo model, as well as a novel
bioreactor and molecular tools, to test our hypothesis with the following specific aims:
Aim I: Determine whether there are sex differences in TGF-β signaling in vitro and AVF remodeling in vivo.
Aim II: Determine optimal delivery to reduce late TGF-β1 signaling thereby enhancing venous adaptation and
improving AVF patency.
Aim III: Determine whether smad2 or tak1 function is a mechanism of TGFβ1-mediated AVF remodeling.
This work will have lasting impact by establishing whether excessive TGF-β activity leads to AVF
failure, and whether reducing late TGF-β activity is a valuable strategy for clinical translation to enhance AVF
patency. We will also determine whether the reduced AVF maturation in women is due to insufficient venous
remodeling or increased neointimal hyperplasia. We use an innovative strategy and novel tools to manipulate
TGF-β signaling to alter vessel wall composition and strength and thereby improve AVF patency.
项目摘要
人类疾病的几种常见疗法的基础是使用静脉作为一种管道
增加血液流量,如动静脉瘘(AVF),这是血液透析的首选途径。然而,
动静脉瘘的成熟度和通畅性较差,特别是在妇女中,需要额外的重做手术和
手术,反映了我们对导致成功的静脉重塑生物学的不完全理解
静脉对动脉环境的适应。这种知识鸿沟创造了对小说的未得到满足的需求
增强静脉重塑从而提高静脉导管临床应用成功率的方法。
成功的静脉重塑需要细胞外基质(ECM)的沉积,使机械
抵抗每周3次用大口径针刺穿动静脉壁的血液透析程序的强度。
转化生长因子-β1调节多种细胞功能,包括细胞外基质沉积和
改建。我们提供了令人振奋的新数据:1)我们创新的AVF鼠标模型忠实地概括了
人动静脉瘘的成熟包括~1/3的失败率;2)动静脉动静脉瘘的雌性小鼠
3)在体内可以调控转化生长因子-β-1的功能,转化生长因子-β-1在体内是必需的。
成功的早期动静脉动静脉瘘重塑;4)在动静脉动静脉瘘失败的小鼠中,细胞外基质和晚期转化生长因子-β1的表达增加
和Smad2/tak1的磷酸化;5)手术后的人AVF中Smad2/tak1的磷酸化增加
6)我们开发了一种创新的纳米颗粒工具来在体内操纵转化生长因子-β1信号。
我们的数据表明,外科手术制造的瘘管通过Smad2/3刺激转化生长因子-β1的早期激活
和/或Tak1磷酸化,这对成功的早期静脉适应和AVF成熟至关重要。我们
假定晚期旺盛的转化生长因子-β1活性导致细胞外基质过度沉积和新生内膜
导致动静脉动静脉瘘衰竭的增生。降低晚期转化生长因子-β1活性应能减少细胞外基质沉积和新生内膜
增殖,从而提高动静脉瘘的通畅性。我们将使用我们创新的体内模型,以及一种新颖的
生物反应器和分子工具,来验证我们的假设,具体目的如下:
目的:确定体外转化生长因子-β信号转导和体内动静脉动静脉瘘重构是否存在性别差异。
目的II:确定最佳给药方式,以减少晚期转化生长因子-β1信号,从而增强静脉适应和
提高AVF的通畅性。
目的III:确定Smad2或Tak1功能是否是转化生长因子β1介导的房室结重构的机制。
这项工作将通过确定过度的转化生长因子-β活性是否会导致动静脉瘘而产生持久的影响
失败,以及降低晚期转化生长因子-β活性是否是增强动静脉曲张的有价值的临床翻译策略
通畅性。我们还将确定女性动静脉瘘成熟度降低是否由于静脉供血不足所致。
血管重塑或新生内膜增生增加。我们使用创新的策略和新颖的工具来操纵
转化生长因子-β信号可改变血管壁的成分和强度,从而改善动静脉瘘的通畅性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Dardik其他文献
Alan Dardik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Dardik', 18)}}的其他基金
Molecular control of vascular smooth muscle reprogramming in arteriovenous fistula maturation
动静脉内瘘成熟过程中血管平滑肌重编程的分子控制
- 批准号:
10735849 - 财政年份:2023
- 资助金额:
$ 65.35万 - 项目类别:
Adaptive immunity regulates arteriovenous fistula remodeling
适应性免疫调节动静脉内瘘重塑
- 批准号:
10574913 - 财政年份:2022
- 资助金额:
$ 65.35万 - 项目类别:
Manipulating the matrix to improve arteriovenous fistula patency
操纵基质以改善动静脉内瘘的通畅
- 批准号:
10460349 - 财政年份:2019
- 资助金额:
$ 65.35万 - 项目类别:
Manipulating the matrix to improve arteriovenous fistula patency
操纵基质以改善动静脉内瘘的通畅
- 批准号:
10648012 - 财政年份:2019
- 资助金额:
$ 65.35万 - 项目类别:
Manipulating the matrix to improve arteriovenous fistula patency
操纵基质以改善动静脉内瘘的通畅
- 批准号:
10223421 - 财政年份:2019
- 资助金额:
$ 65.35万 - 项目类别:
Manipulating the matrix to improve arteriovenous fistula patency
操纵基质以改善动静脉内瘘的通畅
- 批准号:
10001593 - 财政年份:2019
- 资助金额:
$ 65.35万 - 项目类别:
Enhancing venous adaptation to the arterial environment
增强静脉对动脉环境的适应
- 批准号:
9243119 - 财政年份:2016
- 资助金额:
$ 65.35万 - 项目类别:
Enhancing venous adaptation to the arterial environment
增强静脉对动脉环境的适应
- 批准号:
9460535 - 财政年份:2016
- 资助金额:
$ 65.35万 - 项目类别:
Enhancing venous adaptation to the arterial environment
增强静脉对动脉环境的适应
- 批准号:
9102364 - 财政年份:2016
- 资助金额:
$ 65.35万 - 项目类别:
Molecular regulation of fistula adaptation for dialysis access
透析通路瘘管适应的分子调控
- 批准号:
8634237 - 财政年份:2014
- 资助金额:
$ 65.35万 - 项目类别:
相似海外基金
Improving outcomes for haemodialysis patients through minimally invasive arteriovenous fistula creation
通过微创动静脉内瘘创建改善血液透析患者的治疗效果
- 批准号:
10057643 - 财政年份:2023
- 资助金额:
$ 65.35万 - 项目类别:
Collaborative R&D
Improving Ultrasound Pulse Wave Imaging for Prediction of Arteriovenous Fistula Maturation
改进超声脉冲波成像以预测动静脉瘘成熟度
- 批准号:
10749296 - 财政年份:2023
- 资助金额:
$ 65.35万 - 项目类别:
Molecular control of vascular smooth muscle reprogramming in arteriovenous fistula maturation
动静脉内瘘成熟过程中血管平滑肌重编程的分子控制
- 批准号:
10735849 - 财政年份:2023
- 资助金额:
$ 65.35万 - 项目类别:
The Role of Vascular Calprotectin in Arteriovenous Fistula Maturation
血管钙卫蛋白在动静脉瘘成熟中的作用
- 批准号:
10609080 - 财政年份:2022
- 资助金额:
$ 65.35万 - 项目类别:
Adaptive immunity regulates arteriovenous fistula remodeling
适应性免疫调节动静脉内瘘重塑
- 批准号:
10574913 - 财政年份:2022
- 资助金额:
$ 65.35万 - 项目类别:
Biodegradable Radiopaque Polymeric Scaffolds Loaded with Mesenchymal Stem Cells for Image-Guided Arteriovenous Fistula Maturation and Long-Term Patency
装载有间充质干细胞的可生物降解的不透射线聚合物支架,用于图像引导动静脉瘘的成熟和长期通畅
- 批准号:
10464154 - 财政年份:2022
- 资助金额:
$ 65.35万 - 项目类别:
Biodegradable Radiopaque Polymeric Scaffolds Loaded with Mesenchymal Stem Cells for Image-Guided Arteriovenous Fistula Maturation and Long-Term Patency
装载有间充质干细胞的可生物降解的不透射线聚合物支架,用于图像引导动静脉瘘的成熟和长期通畅
- 批准号:
10606532 - 财政年份:2022
- 资助金额:
$ 65.35万 - 项目类别:
The Role of Vascular Calprotectin in Arteriovenous Fistula Maturation
血管钙卫蛋白在动静脉瘘成熟中的作用
- 批准号:
10467193 - 财政年份:2022
- 资助金额:
$ 65.35万 - 项目类别:
Comparing surgical and endovascular arteriovenous fistula creation
手术与血管内动静脉内瘘创建的比较
- 批准号:
10709628 - 财政年份:2022
- 资助金额:
$ 65.35万 - 项目类别:
Comparing surgical and endovascular arteriovenous fistula creation
手术与血管内动静脉内瘘创建的比较
- 批准号:
10586937 - 财政年份:2022
- 资助金额:
$ 65.35万 - 项目类别:














{{item.name}}会员




