Associating retinal nerve fiber layer thickness with glucose metabolism and diabetic retinopathy
视网膜神经纤维层厚度与葡萄糖代谢和糖尿病视网膜病变的关联
基本信息
- 批准号:9809589
- 负责人:
- 金额:$ 31.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyAreaBayesian ModelingBlindnessBloodBlood GlucoseBlood TestsClinicalComplementDataDevelopmentDiabetes MellitusDiabetic RetinopathyDiagnosisDiagnosticDimensionsDiseaseDisease ProgressionEarly treatmentEyeFoundationsFutureGlycosylated hemoglobin AGoalsHealthHeart DiseasesKidney FailureLinear ModelsLinear RegressionsLocationMapsMeasurementMeasuresMetabolicMetabolic DiseasesModelingMonitorNon-Insulin-Dependent Diabetes MellitusOGTTOptic DiskOptical Coherence TomographyParticipantPatientsPatternPhasePopulationPopulation StudyProceduresPublic HealthResearchRetinaRetinalScanningSelection CriteriaSeveritiesSeverity of illnessStrokeSumTechniquesTest ResultTestingThickThinnessTimeValidationage groupbaseclinical Diagnosisdiabeticfasting plasma glucosefollow-upfundus imagingglucose metabolismglucose toleranceinsightlearning strategymaculaneglectnovelpredictive modelingproliferative diabetic retinopathypublic health relevanceretinal nerve fiber layerunsupervised learning
项目摘要
Project Summary/Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease that affects over 300 million people worldwide and that
can be accompanied by serious health complications such as heart disease, kidney failure, stroke, and
damage to the eyes, in particular diabetic retinopathy (DR), which is diagnosed in a third of people with
diabetes and which is the leading cause of blindness within the age group between 20 and 64 years. T2DM is
clinically diagnosed by parameters related to glucose metabolism obtained by blood tests. Due to its long pre-
symptomatic phase, an estimate of 25% of diabetics in the US are undiagnosed. In this project, the relationship
between spatial patterns of retinal nerve fiber layer (RNFL) thickness (RNFLT), measured by spectral-domain
optical coherence tomography (OCT), and blood test levels as well as levels of DR severity is investigated in
9,261 participants of a population based study.
In a first step, OCT RNFLT measurements of the macular and the circumpapillary area around optic
nerve head are segmented into spatial sectors, and representative spatial patterns of RNFLT are calculated by
an unsupervised machine learning method. Afterwards, a multivariate linear model comparison is performed
with the coefficients of the spatial RNFLT patterns as regressors and diagnostic blood test results as
dependent variable. The optimal combination of the RNFLT patterns, determined by an established model
selection criterion (Bayes Factor), is expected to reveal insight into the association between the specific retinal
locations of RNFL thinning accompanying the change in parameters related glucose metabolism during the
development and progression of T2DM. Furthermore, fundus images are graded by DR severity following a
nine-step scale derived from the Early Treatment Diabetic Retinopathy Study from no DR to severe
proliferative DR. The spatial RNFLT patterns and metabolic blood test scores are then compared with respect
to modeling DR severity by linear regression. An optimal model of DR severity combining glucose metabolism
parameters and RNFLT patterns is developed. Finally, in an analogous procedure, DR severity of the follow-up
measurement, five years after baseline, is statistically predicted from RNFLT and metabolic blood parameters
and from their change over time.
To summarize, the proposed research identifies spatial patterns of RNFLT associated with parameters of
glucose metabolism and their development over DR severity. Once accomplished, the proposed project would
provide the details to establish RNFLT as an alternative manifestation of T2DM that complements diagnostic
blood tests and thereby, for instance, lay the foundations for the development of novel and more accurate
T2DM progression monitoring or the prediction of the onset of DR.
项目总结/摘要
2型糖尿病(T2 DM)是一种代谢疾病,影响全球3亿多人,
可伴有严重的健康并发症,如心脏病、肾衰竭、中风,
对眼睛的损害,特别是糖尿病视网膜病变(DR),三分之一的人被诊断为糖尿病视网膜病变。
糖尿病是20至64岁年龄组失明的主要原因。t2 dm是
通过血液检查获得的与葡萄糖代谢相关的参数进行临床诊断。由于其长期的...
在症状阶段,估计美国有25%的糖尿病患者未被诊断。在这个项目中,
视网膜神经纤维层(RNFL)厚度(RNFLT)的空间模式之间,
光学相干断层扫描(OCT)和血液检查水平以及DR严重程度的水平进行了研究,
9,261名参与者参与了一项基于人口的研究。
在第一步中,OCT RNFLT测量黄斑和视神经周围的视乳头周围区域,
将神经头分割成空间扇区,并通过以下计算RNFLT的代表性空间模式:
一种无监督的机器学习方法。然后,进行多元线性模型比较
空间RNFLT模式的系数作为回归量,诊断血液测试结果作为
因变量RNFLT模式的最佳组合,由已建立的模型确定
选择标准(贝叶斯因子),预计将揭示洞察特定视网膜病变之间的关联,
RNFL变薄的位置伴随着糖代谢相关参数的变化,
T2 DM的发展和进展。此外,眼底图像按照DR严重程度进行分级,
从早期治疗糖尿病视网膜病变研究中得出的九步量表,从无DR到重度
然后将空间RNFLT模式和代谢血液测试分数与以下方面进行比较:
通过线性回归对DR严重程度进行建模。结合糖代谢的糖尿病视网膜病变严重程度优化模型
参数和RNFLT模式。最后,在类似的过程中,随访的DR严重程度
基线后5年的测量结果,根据RNFLT和代谢血液参数进行统计学预测
以及它们随时间的变化。
总之,所提出的研究确定了与参数相关的RNFLT的空间模式,
葡萄糖代谢及其随DR严重程度的发展。一旦完成,拟议项目将
提供详细信息,将RNFLT确定为T2 DM的替代表现,以补充诊断
血液测试,从而,例如,奠定了基础,为发展新的和更准确的
T2 DM进展监测或DR发作预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tobias Elze其他文献
Tobias Elze的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tobias Elze', 18)}}的其他基金
Personalizing Glaucoma Diagnosis by Disease Specific Patterns and Individual Eye Anatomy
根据疾病特定模式和个体眼睛解剖结构进行个性化青光眼诊断
- 批准号:
10018038 - 财政年份:2019
- 资助金额:
$ 31.38万 - 项目类别:
Associating retinal nerve fiber layer thickness with glucose metabolism and diabetic retinopathy
视网膜神经纤维层厚度与葡萄糖代谢和糖尿病视网膜病变的关联
- 批准号:
10002287 - 财政年份:2019
- 资助金额:
$ 31.38万 - 项目类别:
Personalizing Glaucoma Diagnosis by Disease Specific Patterns and Individual Eye Anatomy
根据疾病特定模式和个体眼睛解剖结构进行个性化青光眼诊断
- 批准号:
10669671 - 财政年份:2019
- 资助金额:
$ 31.38万 - 项目类别:
Personalizing Glaucoma Diagnosis by Disease Specific Patterns and Individual Eye Anatomy
根据疾病特定模式和个体眼睛解剖结构进行个性化青光眼诊断
- 批准号:
10245094 - 财政年份:2019
- 资助金额:
$ 31.38万 - 项目类别:
Personalizing Glaucoma Diagnosis by Disease Specific Patterns and Individual Eye Anatomy
根据疾病特定模式和个体眼睛解剖结构进行个性化青光眼诊断
- 批准号:
10454416 - 财政年份:2019
- 资助金额:
$ 31.38万 - 项目类别:
A hybrid artificial intelligence framework for glaucoma monitoring
用于青光眼监测的混合人工智能框架
- 批准号:
9892013 - 财政年份:2019
- 资助金额:
$ 31.38万 - 项目类别:
Core Grant for Vision Research-LABORATORY COMPUTER APPLICATIONS MODULE (LCAM)
视觉研究核心资助-实验室计算机应用模块(LCAM)
- 批准号:
10705719 - 财政年份:1997
- 资助金额:
$ 31.38万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 31.38万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 31.38万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Studentship














{{item.name}}会员




