Novel ultra-fast photodetectors for near reconstruction-less time-of-flight positron emission tomography
用于近重建飞行时间正电子发射断层扫描的新型超快光电探测器
基本信息
- 批准号:9809409
- 负责人:
- 金额:$ 22.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBismuthBromidesCalibrationCellsCherry - dietaryClinicalCoupledCrystallizationDataDetectionDevelopmentDevicesDimensionsElectronsEvaluationGamma RaysGermanyGoalsImageJapanLeadLegal patentLesionLightMeasuresMentorshipMorphologic artifactsMuslim religionNoisePenetrationPerformancePeriodicityPhotonsPhysiologic pulsePositioning AttributePositronPositron-Emission TomographyPropertyRadiation Dose UnitReaction TimeResolutionSignal TransductionSiliconStructureSystemTechnologyTestingThalliumThickThinnessTimeWidthWorkabsorptionattenuationbasedesigndetectorexperiencehigh rewardhigh riskimprovedinnovationnoveloff-patentoptical communicationphotomultiplierphoton-counting detectorphotonicspreventprototypequantumradiation detectorreconstructionresponsetumorultraviolet
项目摘要
SUMMARY
Time-of-Flight Positron Emission Tomography (TOF-PET) scanners provide better signal-to-noise ratio (SNR)
and artifact reduction compared to conventional PET systems. The performance of TOF-PET scanners improves
with the timing precision of its detectors: the more accuracy in the time detection of gamma photons the better
the performance. The ultimate aim of TOF-PET is to reach a 10 ps full width at half maximum (FWHM)
coincidence time resolution (CTR) to resolve precisely the positron-electron annihilation point in 3 dimensions.
State-of-the-art PET detectors consist of scintillation crystals coupled to silicon photomultipliers (SiPM) and show
timing resolutions in the order of 100-200 ps FWHM.
In this project, we focus on improving dramatically the timing properties of the SiPMs, as such improvement
would have a strong impact on TOF-PET as it would improve the timing performance of most detectors that use
scintillation crystals and/or Cerenkov light emitters by several-fold. State-of-the-art SiPMs are optimized for a
narrow range of wavelengths (λ) because of the difference in penetration depth at different wavelengths. For
photons of λ=450 nm and λ=590 nm, the attenuation depth is 0.4 μm and 2 μm, respectively. The trade-off is to
either a) to have a thicker depletion layer to absorb a wider range of wavelengths but to increase the time jitter,
or b) to have a thinner depletion layer to reduce the time jitter but absorb only a narrow range of wavelengths.
Therefore, there is not a state-of-the-art SiPM that provides, simultaneously, very fast time response, and high
photon detection efficiency (PDE) across a wide range of wavelengths.
We propose to develop an SiPM prototype with photon-trapping microstructures integrated in the depletion layer
that disperses the light laterally and allows one to obtain high-detection efficiency for a wide range of wavelengths
within a depletion layer of 1 μm. With such a thin layer, the jitter in the electron drift time decreases to 10 ps and
the dark current is expected to decrease as well. This new photosensor could revolutionize TOF-PET.
The utilization of periodic microstructures to bend light in a perpendicular orientation and trapping photons for
enhanced interaction with materials, high detection efficiency and fast response have been recently shown for
wavelengths between 800-900 nm for optical communication. In this proposal, we will develop a new SiPM based
on this technology. First, we will simulate the optimum layer structure to integrate the hole-trapping
microstructures and an avalanche region to provide a gain of >105. Second, we will do an electronic
characterization for the different type of microcells, including a gain calibration and measure quantum efficiency
for different λ for each cell. Finally, we will manufacture a wafer with full-size SiPMs (3x3 mm2) and test the
SiPMs with scintillation crystals and Cerenkov emitters.
总结
飞行时间正电子发射断层扫描(TOF-PET)扫描仪提供更好的信噪比(SNR)
和伪影减少。TOF-PET扫描仪的性能得到改善
其探测器的定时精度:伽马光子的时间探测精度越高,
演出TOF-PET的最终目标是达到10 ps的半高宽(FWHM)
符合时间分辨率(CTR)可精确解析3维正电子-电子湮没点。
最先进的PET探测器由耦合到硅光电倍增管(SiPM)的闪烁晶体组成,
定时分辨率在100-200 ps FWHM的量级。
在这个项目中,我们专注于显著改善SiPM的时序特性,
将对TOF-PET产生强烈影响,因为它将改善大多数使用
闪烁晶体和/或切伦科夫光发射器。最先进的SiPM经过优化,
由于不同波长下的穿透深度不同,波长范围(λ)较窄。为
对于波长为450 nm和590 nm的光子,衰减深度分别为0.4 μm和2 μm。代价是
或者a)具有较厚的耗尽层以吸收较宽范围的波长但增加时间抖动,
或B)具有较薄的耗尽层以减小时间抖动但仅吸收窄范围的波长。
因此,不存在同时提供非常快的时间响应和高性能的最先进的SiPM。
在宽波长范围内的光子探测效率(PDE)。
我们建议开发一个光子捕获微结构集成在耗尽层的硅粉末冶金原型
其使光横向分散并允许人们获得宽波长范围的高检测效率
在1 μm的耗尽层内。利用这样的薄层,电子漂移时间中的抖动减小到10 ps,
预期暗电流也会减小。这种新的光电传感器可以彻底改变TOF-PET。
利用周期性微结构使光在垂直方向上弯曲并捕获光子,
与材料的增强的相互作用、高检测效率和快速响应最近已经被证明用于
波长在800-900 nm之间,用于光通信。在本提案中,我们将开发一种新的SiPM,
on this technology技术.首先,我们将模拟最佳的层结构,以集成空穴捕获
微结构和雪崩区以提供>105的增益。第二,我们要做电子
不同类型的微单元的特性,包括增益校准和测量量子效率
对于每个单元的不同λ。最后,我们将制造具有全尺寸SiPM(3x 3 mm 2)的晶圆,并测试
具有闪烁晶体和切伦科夫发射器的SiPM。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerard Ariño Estrada其他文献
Gerard Ariño Estrada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerard Ariño Estrada', 18)}}的其他基金
TOF-PET with high-efficiency TlCl crystals
具有高效 TlCl 晶体的 TOF-PET
- 批准号:
10660173 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Real-time in vivo proton range verification in proton therapy with thallium bromide detectors
使用溴化铊探测器进行质子治疗中的实时体内质子范围验证
- 批准号:
10390443 - 财政年份:2021
- 资助金额:
$ 22.28万 - 项目类别:
Real-time in vivo proton range verification in proton therapy with thallium bromide detectors
使用溴化铊探测器进行质子治疗中的实时体内质子范围验证
- 批准号:
10559516 - 财政年份:2021
- 资助金额:
$ 22.28万 - 项目类别:
Potential of Cerenkov Radiation for Fast Timing of TlBr Semiconductor Detectors for PET
切伦科夫辐射在 PET 中 TlBr 半导体探测器快速计时方面的潜力
- 批准号:
9437477 - 财政年份:2017
- 资助金额:
$ 22.28万 - 项目类别:
相似海外基金
CAREER: Design Strategies for High-Performance Bismuth- and Lanthanide-Based Single-Molecule Magnets
职业:高性能铋基和镧系单分子磁体的设计策略
- 批准号:
2339595 - 财政年份:2024
- 资助金额:
$ 22.28万 - 项目类别:
Continuing Grant
Time-of-flight positron emission tomography using Cerenkov luminescence in bismuth germanate
使用锗酸铋中的切伦科夫发光进行飞行时间正电子发射断层扫描
- 批准号:
10766104 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Bubbles Behavior in Molten Lead-Bismuth Eutectic
熔融铅铋共晶中的气泡行为
- 批准号:
23K13687 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Bismuth titanate-based high temperature piezoceramics: Domain structure and polarization dynamics
钛酸铋基高温压电陶瓷:磁畴结构和极化动力学
- 批准号:
22KF0290 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Combating Antimicrobial Resistance with Bismuth, Gallium and Indium
用铋、镓和铟对抗抗菌素耐药性
- 批准号:
DP220103632 - 财政年份:2022
- 资助金额:
$ 22.28万 - 项目类别:
Discovery Projects
CAS: Development of Structure-Property Relationships in Photoluminescent Bismuth Organic Materials
CAS:光致发光有机铋材料结构-性能关系的发展
- 批准号:
2203658 - 财政年份:2022
- 资助金额:
$ 22.28万 - 项目类别:
Continuing Grant
Development of catalysts and reagents based on the unique characteristics of bismuth
基于铋的独特特性开发催化剂和试剂
- 批准号:
22K05105 - 财政年份:2022
- 资助金额:
$ 22.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bismuth catalyzed polymerization to make biodegradable polymers
铋催化聚合制备可生物降解聚合物
- 批准号:
572309-2022 - 财政年份:2022
- 资助金额:
$ 22.28万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Designing Hypervalent Bismuth Complexes with Reactive Perfluorinated Groups for Selective Organofluorination and Expanding Outreach in STEM Education in Hawaii.
职业:设计具有反应性全氟化基团的高价铋配合物,用于选择性有机氟化并扩大夏威夷 STEM 教育的范围。
- 批准号:
2046288 - 财政年份:2021
- 资助金额:
$ 22.28万 - 项目类别:
Continuing Grant