Novel ultra-fast photodetectors for near reconstruction-less time-of-flight positron emission tomography

用于近重建飞行时间正电子发射断层扫描的新型超快光电探测器

基本信息

项目摘要

SUMMARY Time-of-Flight Positron Emission Tomography (TOF-PET) scanners provide better signal-to-noise ratio (SNR) and artifact reduction compared to conventional PET systems. The performance of TOF-PET scanners improves with the timing precision of its detectors: the more accuracy in the time detection of gamma photons the better the performance. The ultimate aim of TOF-PET is to reach a 10 ps full width at half maximum (FWHM) coincidence time resolution (CTR) to resolve precisely the positron-electron annihilation point in 3 dimensions. State-of-the-art PET detectors consist of scintillation crystals coupled to silicon photomultipliers (SiPM) and show timing resolutions in the order of 100-200 ps FWHM. In this project, we focus on improving dramatically the timing properties of the SiPMs, as such improvement would have a strong impact on TOF-PET as it would improve the timing performance of most detectors that use scintillation crystals and/or Cerenkov light emitters by several-fold. State-of-the-art SiPMs are optimized for a narrow range of wavelengths (λ) because of the difference in penetration depth at different wavelengths. For photons of λ=450 nm and λ=590 nm, the attenuation depth is 0.4 μm and 2 μm, respectively. The trade-off is to either a) to have a thicker depletion layer to absorb a wider range of wavelengths but to increase the time jitter, or b) to have a thinner depletion layer to reduce the time jitter but absorb only a narrow range of wavelengths. Therefore, there is not a state-of-the-art SiPM that provides, simultaneously, very fast time response, and high photon detection efficiency (PDE) across a wide range of wavelengths. We propose to develop an SiPM prototype with photon-trapping microstructures integrated in the depletion layer that disperses the light laterally and allows one to obtain high-detection efficiency for a wide range of wavelengths within a depletion layer of 1 μm. With such a thin layer, the jitter in the electron drift time decreases to 10 ps and the dark current is expected to decrease as well. This new photosensor could revolutionize TOF-PET. The utilization of periodic microstructures to bend light in a perpendicular orientation and trapping photons for enhanced interaction with materials, high detection efficiency and fast response have been recently shown for wavelengths between 800-900 nm for optical communication. In this proposal, we will develop a new SiPM based on this technology. First, we will simulate the optimum layer structure to integrate the hole-trapping microstructures and an avalanche region to provide a gain of >105. Second, we will do an electronic characterization for the different type of microcells, including a gain calibration and measure quantum efficiency for different λ for each cell. Finally, we will manufacture a wafer with full-size SiPMs (3x3 mm2) and test the SiPMs with scintillation crystals and Cerenkov emitters.
总结 飞行时间正电子发射断层扫描(TOF-PET)扫描仪提供更好的信噪比(SNR) 和伪影减少。TOF-PET扫描仪的性能得到改善 其探测器的定时精度:伽马光子的时间探测精度越高, 演出TOF-PET的最终目标是达到10 ps的半高宽(FWHM) 符合时间分辨率(CTR)可精确解析3维正电子-电子湮没点。 最先进的PET探测器由耦合到硅光电倍增管(SiPM)的闪烁晶体组成, 定时分辨率在100-200 ps FWHM的量级。 在这个项目中,我们专注于显著改善SiPM的时序特性, 将对TOF-PET产生强烈影响,因为它将改善大多数使用 闪烁晶体和/或切伦科夫光发射器。最先进的SiPM经过优化, 由于不同波长下的穿透深度不同,波长范围(λ)较窄。为 对于波长为450 nm和590 nm的光子,衰减深度分别为0.4 μm和2 μm。代价是 或者a)具有较厚的耗尽层以吸收较宽范围的波长但增加时间抖动, 或B)具有较薄的耗尽层以减小时间抖动但仅吸收窄范围的波长。 因此,不存在同时提供非常快的时间响应和高性能的最先进的SiPM。 在宽波长范围内的光子探测效率(PDE)。 我们建议开发一个光子捕获微结构集成在耗尽层的硅粉末冶金原型 其使光横向分散并允许人们获得宽波长范围的高检测效率 在1 μm的耗尽层内。利用这样的薄层,电子漂移时间中的抖动减小到10 ps, 预期暗电流也会减小。这种新的光电传感器可以彻底改变TOF-PET。 利用周期性微结构使光在垂直方向上弯曲并捕获光子, 与材料的增强的相互作用、高检测效率和快速响应最近已经被证明用于 波长在800-900 nm之间,用于光通信。在本提案中,我们将开发一种新的SiPM, on this technology技术.首先,我们将模拟最佳的层结构,以集成空穴捕获 微结构和雪崩区以提供>105的增益。第二,我们要做电子 不同类型的微单元的特性,包括增益校准和测量量子效率 对于每个单元的不同λ。最后,我们将制造具有全尺寸SiPM(3x 3 mm 2)的晶圆,并测试 具有闪烁晶体和切伦科夫发射器的SiPM。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerard Ariño Estrada其他文献

Gerard Ariño Estrada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerard Ariño Estrada', 18)}}的其他基金

TOF-PET with high-efficiency TlCl crystals
具有高效 TlCl 晶体的 TOF-PET
  • 批准号:
    10660173
  • 财政年份:
    2023
  • 资助金额:
    $ 22.28万
  • 项目类别:
Real-time in vivo proton range verification in proton therapy with thallium bromide detectors
使用溴化铊探测器进行质子治疗中的实时体内质子范围验证
  • 批准号:
    10390443
  • 财政年份:
    2021
  • 资助金额:
    $ 22.28万
  • 项目类别:
Real-time in vivo proton range verification in proton therapy with thallium bromide detectors
使用溴化铊探测器进行质子治疗中的实时体内质子范围验证
  • 批准号:
    10559516
  • 财政年份:
    2021
  • 资助金额:
    $ 22.28万
  • 项目类别:
Potential of Cerenkov Radiation for Fast Timing of TlBr Semiconductor Detectors for PET
切伦科夫辐射在 PET 中 TlBr 半导体探测器快速计时方面的潜力
  • 批准号:
    9437477
  • 财政年份:
    2017
  • 资助金额:
    $ 22.28万
  • 项目类别:

相似海外基金

CAREER: Design Strategies for High-Performance Bismuth- and Lanthanide-Based Single-Molecule Magnets
职业:高性能铋基和镧系单分子磁体的设计策略
  • 批准号:
    2339595
  • 财政年份:
    2024
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Continuing Grant
Time-of-flight positron emission tomography using Cerenkov luminescence in bismuth germanate
使用锗酸铋中的切伦科夫发光进行飞行时间正电子发射断层扫描
  • 批准号:
    10766104
  • 财政年份:
    2023
  • 资助金额:
    $ 22.28万
  • 项目类别:
Bubbles Behavior in Molten Lead-Bismuth Eutectic
熔融铅铋共晶中的气泡行为
  • 批准号:
    23K13687
  • 财政年份:
    2023
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Bismuth titanate-based high temperature piezoceramics: Domain structure and polarization dynamics
钛酸铋基高温压电陶瓷:磁畴结构和极化动力学
  • 批准号:
    22KF0290
  • 财政年份:
    2023
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Combating Antimicrobial Resistance with Bismuth, Gallium and Indium
用铋、镓和铟对抗抗菌素耐药性
  • 批准号:
    DP220103632
  • 财政年份:
    2022
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Discovery Projects
CAS: Development of Structure-Property Relationships in Photoluminescent Bismuth Organic Materials
CAS:光致发光有机铋材料结构-性能关系的发展
  • 批准号:
    2203658
  • 财政年份:
    2022
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Continuing Grant
Development of catalysts and reagents based on the unique characteristics of bismuth
基于铋的独特特性开发催化剂和试剂
  • 批准号:
    22K05105
  • 财政年份:
    2022
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bismuth catalyzed polymerization to make biodegradable polymers
铋催化聚合制备可生物降解聚合物
  • 批准号:
    572309-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 22.28万
  • 项目类别:
    University Undergraduate Student Research Awards
Bismuth-chalcohalide solar cells
铋卤化物太阳能电池
  • 批准号:
    2742857
  • 财政年份:
    2022
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Studentship
CAREER: Designing Hypervalent Bismuth Complexes with Reactive Perfluorinated Groups for Selective Organofluorination and Expanding Outreach in STEM Education in Hawaii.
职业:设计具有反应性全氟化基团的高价铋配合物,用于选择性有机氟化并扩大夏威夷 STEM 教育的范围。
  • 批准号:
    2046288
  • 财政年份:
    2021
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了