Structural and Functional Bases of Stress-Activated RNA Decay Mediated by RNase L

RNase L 介导的应激激活 RNA 衰变的结构和功能基础

基本信息

  • 批准号:
    9267489
  • 负责人:
  • 金额:
    $ 30.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): RNA decay is a key mechanism of gene regulation in human cells, controlling RNA abundance and responses to stress. The goal of this proposal is to determine the molecular basis for stress- activated RNA decay mediated by the ubiquitous human protein kinase/endoribonuclease RNase L (Aim 1 and Aim 2) and to build tools to overcome the considerable experimental limitations in studies of this pathway (Aim 3). RNase L activates the production of interferons and cytokines, and inhibits a broad spectrum of human viruses, so a large body of research focuses on its antiviral effects. RNase L is a tumor suppressor gene in prostate cancer and is an essential mediator of adipocyte differentiation and apoptosis, making it an attractive target for diagnostics and treatment of a large number of human diseases. However, a part of the challenge with these applications, and a major challenge in understanding the RNase L-mediated RNA decay, is our limited knowledge of the molecular structures and mechanisms controlling this pathway. Our proposal aims to address these limitations by obtaining a detailed structural and molecular understanding of the key proteins and protein complexes responsible for RNA cleavage. This proposal is focused on structural and biochemical studies of RNase L and of two unconventional human RNA polymerases OAS1 and OAS3 required for activation of RNase L. During preliminary work described in our recent publications, we determined several crystal structures of these proteins or their domains. This progress and our established track record in the field of signal transduction and protein/RNA recognition position our laboratory ideally for structural and functional analysis of RNA decay mediated by RNase L. We propose three independent but complementary specific aims. In Aim 1 of this proposal we will elucidate the molecular mechanism by which OAS1 and OAS3 synthesize 2-5A, a specific cofactor of RNase L required for activation of RNA decay. This work is important because it will lay the foundation for rational studies of the machinery for synthesis of 2-5A and for therapeutic targeting of this machinery in diseases. In Aim 2 we will determine the crystal structure of RNase L. This work will provide a detailed molecular understanding of the unique protein kinase/RNase driving stress-activated RNA decay in human cells. In Aim 3, we will engineer light-emitting reporters of 2-5A, which will enable rapid and specific detection of 2-5A synthesis in vitro and in vivo. This work will eliminat a significant obstacle in the field due to the lack of tools to monitor the activation of the RNaseL pathway specifically and non-invasively. The long-term goal of our work will be to understand the mechanism of RNase L-mediated RNA decay by understanding structures, functions, and regulation of the molecular components in this pathway.
描述(由申请人提供):RNA 衰减是人类细胞中基因调控的关键机制,控制着 RNA 丰度和对应激的反应。该提案的目标是确定由普遍存在的人类蛋白激酶/核糖核酸内切酶 RNase L 介导的应激激活 RNA 衰变的分子基础(目标 1 和目标 2),并构建工具来克服该途径研究中相当大的实验限制(目标 3)。 RNase L 可激活干扰素和细胞因子的产生,并抑制多种人类病毒,因此大量研究都集中在其抗病毒作用上。 RNase L 是前列腺癌中的抑癌基因,是脂肪细胞分化和凋亡的重要介质,使其成为诊断和治疗大量人类疾病的有吸引力的靶点。然而,这些应用面临的部分挑战,以及理解 RNase L 介导的 RNA 衰变的主要挑战,是我们对控制该途径的分子结构和机制的了解有限。我们的建议旨在通过对负责 RNA 切割的关键蛋白质和蛋白质复合物获得详细的结构和分子了解来解决这些限制。 该提案的重点是 RNase L 以及激活 RNase L 所需的两种非常规人类 RNA 聚合酶 OAS1 和 OAS3 的结构和生化研究。在我们最近出版物中描述的初步工作中,我们确定了这些蛋白质或其结构域的几种晶体结构。这一进展以及我们在信号转导和蛋白质/RNA 识别领域的既定记录使我们的实验室成为对 RNase L 介导的 RNA 衰变进行结构和功能分析的理想选择。我们提出了三个独立但互补的具体目标。 在本提案的目标 1 中,我们将阐明 OAS1 和 OAS3 合成 2-5A 的分子机制,2-5A 是激活 RNA 衰变所需的 RNase L 的特定辅因子。这项工作很重要,因为它将为理性奠定基础 研究 2-5A 合成机制以及该机制在疾病中的治疗靶向。在目标 2 中,我们将确定 RNase L 的晶体结构。这项工作将为驱动人类细胞中应激激活的 RNA 衰变的独特蛋白激酶/RNase 提供详细的分子理解。在目标 3 中,我们将设计 2-5A 的发光报告基因,这将能够在体外和体内快速、特异性地检测 2-5A 的合成。这项工作将消除该领域由于缺乏专门且非侵入性监测 RNaseL 通路激活的工具而存在的重大障碍。我们工作的长期目标是通过了解 RNase L 介导的 RNA 衰减的结构、功能和该途径中分子成分的调节来了解该机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexei Korennykh其他文献

Alexei Korennykh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexei Korennykh', 18)}}的其他基金

Structural and Functional Bases of Stress-Activated RNA Decay Mediated by RNase L
RNase L 介导的应激激活 RNA 衰变的结构和功能基础
  • 批准号:
    8671085
  • 财政年份:
    2014
  • 资助金额:
    $ 30.13万
  • 项目类别:
Structure and Function of Kinase Family Receptors Regulating Translation
调节翻译的激酶家族受体的结构和功能
  • 批准号:
    10237208
  • 财政年份:
    2014
  • 资助金额:
    $ 30.13万
  • 项目类别:
Structure and Function of Kinase Family Receptors Regulating Translation
调节翻译的激酶家族受体的结构和功能
  • 批准号:
    10414028
  • 财政年份:
    2014
  • 资助金额:
    $ 30.13万
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了