Organic Polymerization Catalysis: Precision Macromolecules for Recognition in Biological Systems
有机聚合催化:生物系统中识别的精密大分子
基本信息
- 批准号:9322538
- 负责人:
- 金额:$ 8.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2017-08-15
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureBacteriaBiochemistryBiologicalCatalysisCellsCharacteristicsChemicalsChemistryColoradoDevelopmentDrug Delivery SystemsDrug TargetingEngineeringFoundationsGoalsGrowthKnowledgeLengthMammalian CellMechanicsMediatingMetalsMethodologyMethodsMissionMolecularMolecular ConformationNational Institute of General Medical SciencesPatternPolymersPrintingPropertyPublic HealthReactionResearchResearch ProposalsRouteStructureStructure of parenchyma of lungSystemTechnologyTissue EngineeringUniversitiesWorkWritingantimicrobialantimicrobial drugbiological systemsbiomaterial compatibilitycatalystcopolymerdesignengineering designinnovationmacromoleculematerials sciencemonomerphotopolymerizationpolymerizationprogramsrestorationscaffoldsolid statetissue support frame
项目摘要
There is a fundamental lack of understanding in how the structure and architecture of a synthetic
polymer influences recognition in biological systems. Furthermore, there is a disconnection between the
properties of polymers in solution and the solid state with their relationships with biological systems.
Understanding how the conformational dynamics of a synthetic polymer can enhance biological recognition will
advance fields including targeted drug delivery, antimicrobial agents, and tissue engineering. However, gaining
the knowledge required to address this fundamental gap first necessitates the capability to synthesize
precision macromolecules and scaffolds through a biocompatible approach. The long-term goal of this project
is to establish a modular polymerization technology, using organic photocatalysts, for 3D printing of scaffolds
with precisely defined molecular, chemical, mechanical, and geometric properties targeting lung tissue
restoration. The central hypothesis of this research program is that the ability to use our biocompatible photo-
mediated polymerization technology for 3D printing of scaffolds with defined components over several different
length scales will enable tuning the scaffold for nurturing tissue growth. The overall objective of this application
is to advance our polymerization technology using organic photocatalysts to mediate a metal free atom transfer
radical polymerization en route to realizing a stereospecfic radical polymerization through flow chemistry
reaction engineering design. With the capability to synthesize functionally diverse stereoregular polymers, we
will determine the effects of polymer tacticity on their antimicrobial activity and selectivity for bacteria and
compatibility with mammalian cells. Through catalyst development and expansion of monomer scope, we will
establish a photographic photolithography approach to write distinct 2 and 3D polymer patterns in chemical
composition through monomer selection. Furthermore, our approach to connect polymers in solution to those
in the solid state will investigate molecular brush copolymers as intermediate macromolecules that possess
characteristics similar to both forms. We will introduce these molecular brush copolymers into biological
systems to explore the differences between them and the discrete polymer chains from our concurrent cell
studies. These findings will help resolve the essential structural features of polymers to yield efficient solid
state scaffolds for tissue engineering. The innovation of this research is within the methodology built upon our
group’s foundational and ongoing work of developing an organocatalyzed atom transfer radical polymerization,
which promises to yield new materials for introduction in biomedical applications. The rationale for this
research is that it brings forth new materials that are only accessible through the development of our
polymerization technology, which will allow the design and synthesis of polymers that more efficiently mimic
natural systems for enhanced biological recognition.
人们根本不了解合成物的结构和体系结构是如何
聚合物影响生物系统中的识别。此外,两者之间存在着脱节。
聚合物在溶液和固态中的性质及其与生物系统的关系。
了解合成聚合物的构象动力学如何增强生物识别将
先进领域,包括靶向药物输送、抗菌剂和组织工程。然而,获得了
解决这一根本差距所需的知识首先需要有综合能力
通过生物兼容的方法获得精确的大分子和支架。这个项目的长期目标是
是建立一种使用有机光催化剂的模块化聚合技术,用于支架的3D打印
具有精确定义的以肺组织为靶点的分子、化学、机械和几何特性
修复。这项研究计划的中心假设是,使用我们的生物兼容照片的能力-
介体聚合技术在几种不同类型支架上的3D打印
长度刻度将使支架能够进行调节,以促进组织生长。本应用程序的总体目标是
是提高我们的聚合技术,使用有机光催化剂来中介金属自由原子转移
自由基聚合--通过流动化学实现立体定向自由基聚合
反应工程设计。有能力合成不同功能的立体规则聚合物,我们
将确定聚合物的规整度对其抗菌活性和对细菌的选择性的影响
与哺乳动物细胞的兼容性。通过催化剂的开发和单体范围的扩大,我们将
建立一种照相光刻方法以在化学物质中写入不同的2和3维聚合物图案
通过单体选择合成。此外,我们在溶液中连接聚合物的方法
在固态中将研究分子刷共聚物作为中间大分子拥有
这两种形式都有相似的特点。我们将把这些分子刷共聚物引入生物
系统来探索它们与我们同时存在的细胞中的离散高分子链之间的差异
学习。这些发现将有助于解决聚合物的基本结构特征,以产生高效固体
用于组织工程的国家支架。这项研究的创新之处在于建立在我们的
集团开发有机催化原子转移自由基聚合的基础和正在进行的工作,
它有望为生物医学应用提供新的材料。这样做的理由是
研究是,它带来了新的材料,只有通过我们的发展才能获得
聚合技术,这将允许设计和合成更有效地模仿
增强生物识别的自然系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Garret Morgan Miyake其他文献
Garret Morgan Miyake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Garret Morgan Miyake', 18)}}的其他基金
Organic Photoredox Catalysts for Synthetic Method Development
用于合成方法开发的有机光氧化还原催化剂
- 批准号:
10546507 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Organic Photoredox Catalysts for Synthetic Method Development
用于合成方法开发的有机光氧化还原催化剂
- 批准号:
10337951 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant