Genetically-targeted hemodynamic functional imaging
基因靶向血流动力学功能成像
基本信息
- 批准号:9404180
- 负责人:
- 金额:$ 53.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimal ModelAnimalsAutopsyBehavioralBlood VesselsBlood flowBrainBrain imagingBrain regionBypassCalciumCell Culture TechniquesCell physiologyCellsCognitionContralateralCouplesCouplingDetectionDiseaseDistantEngineeringEnzymesEvaluationFOS geneFamilyFiberFunctional ImagingFunctional Magnetic Resonance ImagingGene ExpressionGenesGeneticHistologicHumanImageInfectionInjection of therapeutic agentInvestigationIpsilateralLabelLeadLiteratureMammalsMapsMeasurementModalityMolecular ProbesMonitorMultimodal ImagingNeurogliaNeuronsNeurophysiology - biologic functionNeurosciencesNeurosciences ResearchNitric OxideNitric Oxide SynthaseNitric Oxide Synthase Type IPerceptionPharmacologyPhysiologicalPopulationProtein EngineeringRattusReporterReportingResearch PersonnelRoleScanningSeriesSignal PathwaySignal TransductionSiteSourceSpecificitySystemTechniquesThalamic structureTimeTissue imagingUltrasonographyVariantViralViral VectorVirusWorkbasecell typeexperimental studyhemodynamicsimaging approachimaging modalityimprovedin vivoinhibitor/antagonistneural circuitneuroimagingneurovascularneurovascular couplingnon-invasive imagingnovelnovel strategiesoptoacoustic tomographyrelating to nervous systemresponsesomatosensorytoolvector
项目摘要
The dominant techniques for brain-wide functional imaging in humans and opaque mammals make use of he-
modynamic contrast that results from coupling between neural activity and changes in blood flow and can be
detected by noninvasive imaging methods including functional magnetic resonance imaging (fMRI), functional
photoacoustic tomography (fPAT), functional ultrasound imaging (fUS), and others. Although hemodynamic
functional imaging in both humans and animals has been used to make some of the most important discover-
ies in neuroscience, the techniques are limited by their lack of specificity to mechanistically-distinct compo-
nents of brain activity. Our group has helped lead efforts to bypass limitations of hemodynamic functional imag-
ing by developing molecular probes that report physiologically-specific hallmarks of neural activity via noninva-
sive imaging. Here we propose the complementary and hitherto unprecedented strategy of working “within the
system” to improve the specificity intrinsic hemodynamic readouts themselves. Specifically, we propose to ge-
netically enhance a signaling pathway that directly couples the activity of targeted neurons or glia to blood ves-
sels, thus introducing artificial hemodynamic functional signals that can be attributed to distinct cell type- or
circuit-specific cellular processes in the brain. This approach will harness the amplification afforded by hemo-
dynamic imaging while bypassing numerous complexities of endogenous neurovascular mechanisms, in effect
hijacking hemodynamic signals to report on circuit- or cell type-specific activity. Compared with efforts based
on more conventional imaging methods, the engineered hemodynamic imaging approach will offer key ad-
vantages: (1) capability for selective imaging of genetically-targeted brain circuits and cell types, (2) compatibil-
ity with a variety of genetic tools, in particular including viral transduction and tracing vectors, (3) applicability to
brain-wide deep tissue imaging in multiple species, (4) compatibility with many established modalities for func-
tional neuroimaging, (5) potential sensitivity to relatively low activity levels and sparse neuronal populations.
Our work on this novel strategy will be organized into two Aims: In Aim 1 we will engineer a new family of
genetically encodable neural activity reporters that will underlie the new engineered hemodynamic imaging
approach. The reporters will be derived from naturally occurring nitric oxide synthase enzymes and are re-
ferred to as NOSTICs. In Aim 2, we will deliver NOSTIC genes to rat brains using viral vectors, and perform an
extensive series of imaging and histological investigations to validate and optimize our new imaging in vivo.
We anticipate that completion of these Aims will introduce a potent new approach for multimodal imaging-
based investigations of circuitry and cell type-specific contributions to neural function in diverse species and
behavioral contexts.
人类和不透明哺乳动物脑功能成像的主要技术是利用he-
由神经活动和血流变化之间的耦合产生的动力学对比,
通过非侵入性成像方法检测,包括功能性磁共振成像(fMRI)、功能性
光声断层扫描(fPAT)、功能超声成像(fUS)等。虽然血流动力学
人类和动物的功能成像已经被用来做出一些最重要的发现-
在神经科学中,这些技术由于缺乏对机械上不同的成分的特异性而受到限制,
大脑活动的神经元。我们的团队帮助领导了绕过血流动力学功能图像限制的努力,
通过开发分子探针,通过非侵入性神经活动报告生理特异性标志,
动态成像在此,我们提出了一项补充性的、前所未有的战略,即“在
系统”,以提高特异性内在血流动力学读数本身。具体来说,我们建议-
从本质上增强信号通路,直接将目标神经元或神经胶质的活动与血管偶联,
sels,从而引入可归因于不同细胞类型的人工血液动力学功能信号-或
大脑中特定回路的细胞过程。这种方法将利用由血红素提供的放大作用,
动态成像,同时绕过内源性神经血管机制的许多复杂性,
劫持血液动力学信号来报告电路或细胞类型特定的活动。与基于
在更传统的成像方法,工程血流动力学成像方法将提供关键的广告,
优点:(1)对基因靶向脑回路和细胞类型进行选择性成像的能力,(2)兼容性,
与各种遗传工具,特别是包括病毒转导和追踪载体,(3)适用于
在多个物种中的全脑深部组织成像,(4)与许多已建立的功能模式的兼容性,
(5)对相对低的活动水平和稀疏的神经元群体的潜在敏感性。
我们在这一新战略上的工作将分为两个目标:在目标1中,我们将设计一个新的家庭,
基因编码的神经活动报告者将成为新的工程血流动力学成像的基础,
approach.报告基因将来源于天然存在的一氧化氮合酶,
被称为NOSTIC。在目标2中,我们将使用病毒载体将NOSTIC基因递送到大鼠脑中,并进行一个
广泛的一系列成像和组织学研究,以验证和优化我们的新成像在体内。
我们预计,这些目标的完成将为多模态成像引入一种有效的新方法-
基于对不同物种中电路和细胞类型对神经功能的特定贡献的研究,
行为背景
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Jasanoff其他文献
Alan Jasanoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Jasanoff', 18)}}的其他基金
Analysis of integrated brain functions using hemogenetic imaging
使用血遗传学成像分析大脑的综合功能
- 批准号:
10365025 - 财政年份:2022
- 资助金额:
$ 53.7万 - 项目类别:
Analysis of Integrated Brain Functions Using Hemogenetic Imaging
使用血遗传学成像分析大脑的综合功能
- 批准号:
10553193 - 财政年份:2022
- 资助金额:
$ 53.7万 - 项目类别:
Multimodal probes for multiscale calcium imaging
用于多尺度钙成像的多模态探针
- 批准号:
10154098 - 财政年份:2021
- 资助金额:
$ 53.7万 - 项目类别:
Hemogenetic imaging technology for circuit-specific analysis of primate brain function
用于灵长类大脑功能电路特异性分析的血遗传学成像技术
- 批准号:
10652546 - 财政年份:2021
- 资助金额:
$ 53.7万 - 项目类别:
Hemogenetic imaging technology for circuit-specific analysis of primate brain function
用于灵长类大脑功能电路特异性分析的血遗传学成像技术
- 批准号:
10271639 - 财政年份:2021
- 资助金额:
$ 53.7万 - 项目类别:
Hemogenetic imaging technology for circuit-specific analysis of primate brain function
用于灵长类大脑功能电路特异性分析的血遗传学成像技术
- 批准号:
10478067 - 财政年份:2021
- 资助金额:
$ 53.7万 - 项目类别:
Nanosensors for sensitive brain-wide neurochemical imaging
用于敏感全脑神经化学成像的纳米传感器
- 批准号:
10154138 - 财政年份:2021
- 资助金额:
$ 53.7万 - 项目类别:
Toward functional molecular neuroimaging using vasoactive probes in human subjects
在人类受试者中使用血管活性探针进行功能性分子神经成像
- 批准号:
10253338 - 财政年份:2021
- 资助金额:
$ 53.7万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




