Computational Modeling of Heterogeneous Gene Expression in Single Cells

单细胞异质基因表达的计算模型

基本信息

  • 批准号:
    9285609
  • 负责人:
  • 金额:
    $ 1.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2017-08-01
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The recent development of single cell RNA-seq protocols enabled genomewide investigation of organismal systems at the cellular level, opening many new biological questions for study. Single cell resolution allows characterization of rare or unknown cell types, enables dissection of differentiation processes, and aids in decoding regulatory networks responsible for healthy and diseased states of cells. However, current single cell RNA-seq studies are limited by crucial gaps in existing computational methods. We have devised strategies to address three key limitations of current single cell RNA-seq analysis methods: (1) lack of models for isoform-specific expression, (2) inability to link gene expression differences with measurable changes in cell function, and (3) lack of methods for studying sequential progression of gene expression changes. To address the first shortcoming, we developed SingleSplice, an algorithm for identifying genes whose isoform ratios vary more than expected by chance across a set of single cells (Aim 1). We have also developed a novel microraft platform that allows culturing, functional characterization, isolation, and subsequent sequencing of single cells. Using data generated from this platform, we will perform supervised machine learning to identify genes linked to functional differences among cells (Aim 2). To address the third limitation, we will use locally linear embedding, a nonlinear dimensionality reduction technique, to identify "trajectories" of cells proceeding through sequential processes such as development and response to stimuli (Aim 3). We will apply our methods to our own data generated from microraft experiments, as well as publicly available single cell RNA-seq data from developing lung tissue and immune cells responding to immune stimulation. Using data from experiments in which spike-in transcripts are added at constant, known amounts to cells to mimic an alternative splicing change, we found that SingleSplice detects isoform switching with high sensitivity (73%) and specificity (93%). We used microrafts to sequence single cells from a pancreatic cancer cell line and found that this approach produced high-quality data comparable to that from the Fluidigm C1. The microraft technology also enabled us to sequence RNA from pancreatic cancer cells after gemcitabine treatment and measure the proliferation of the cells, identifying both "drug resistant" cells that divide and cels that do not proliferate, giving a dataset with matched functional and transcriptomic measurements. Preliminary investigation of a dataset in which dendritic cells were stimulated with bacterial lipopolysaccharide (LPS) shows that locally linear embedding (LLE) can order cells according to the length of time they have been exposed to LPS.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Welch其他文献

Joshua Welch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Welch', 18)}}的其他基金

Linking molecular and anatomical features of brain cell identity through computational data integration
通过计算数据集成将脑细胞身份的分子和解剖特征联系起来
  • 批准号:
    10009608
  • 财政年份:
    2020
  • 资助金额:
    $ 1.18万
  • 项目类别:
Quantitative Definition of Cell Identity by Integrating Transcriptomic, Epigenomic, and Spatial Features of Individual Cells
通过整合单个细胞的转录组、表观基因组和空间特征来定量定义细胞身份
  • 批准号:
    10190991
  • 财政年份:
    2019
  • 资助金额:
    $ 1.18万
  • 项目类别:
Quantitative Definition of Cell Identity by Integrating Transcriptomic, Epigenomic, and Spatial Features of Individual Cells
通过整合单个细胞的转录组、表观基因组和空间特征来定量定义细胞身份
  • 批准号:
    10428484
  • 财政年份:
    2019
  • 资助金额:
    $ 1.18万
  • 项目类别:
Quantitative Definition of Cell Identity by Integrating Transcriptomic, Epigenomic, and Spatial Features of Individual Cells
通过整合单个细胞的转录组、表观基因组和空间特征来定量定义细胞身份
  • 批准号:
    10006894
  • 财政年份:
    2019
  • 资助金额:
    $ 1.18万
  • 项目类别:
Quantitative Definition of Cell Identity by Integrating Transcriptomic, Epigenomic, and Spatial Features of Individual Cells
通过整合单个细胞的转录组、表观基因组和空间特征来定量定义细胞身份
  • 批准号:
    10652498
  • 财政年份:
    2019
  • 资助金额:
    $ 1.18万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了