Integrated understanding of complex viral network biology in Alzheimer's Disease
对阿尔茨海默病复杂病毒网络生物学的综合理解
基本信息
- 批准号:9557996
- 负责人:
- 金额:$ 84.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AgeAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease riskAnimal ModelAntigensAntiviral AgentsAutopsyBiologicalBiological AssayBiologyBrain regionC2H2 Zinc FingerCellsCessation of lifeClinicalCognitiveCommunitiesComplexCytoskeletal ModelingDNADNA sequencingDataData SetDementiaDisease ProgressionDisease modelEvaluationFunctional disorderG-QuartetsG-substrateGeneticGenomicsHHV-6AHereditary DiseaseHippocampus (Brain)HumanHuman Herpesvirus 7Immune responseImpaired cognitionIndividualInnate Immune ResponseInterventionLasersLinkMapsMeasuresMediatingMicrobeModelingMolecularMolecular GeneticsMolecular ModelsNerve DegenerationNeuronsPathogenicityPathologyPathway AnalysisPhenotypePredispositionProductivityProtein BiosynthesisProteinsRNARecordsResearchResearch PersonnelRoleRoseolovirusSamplingSeveritiesSeverity of illnessStructureSusceptibility GeneTestingTimeTissuesVariantViralViral GenesViral PhysiologyVirusWorkamyloid precursor protein processingbasecase controldisorder controldrug discoveryentorhinal cortexexperimental studyfunctional genomicshuman subjectimprovedmicrobialmolecular modelingmolecular pathologynetwork modelsneuropathologynext generationnext generation sequencingnovelnovel therapeuticspathogenpre-clinicalrole modeltraittranscriptome sequencingvirus virus interaction
项目摘要
Investigators have long suspected that pathogenic microbes might contribute to the onset or progression of
Alzheimer's disease (AD), but the question of whether microbe-related antigens represent a causal component
of AD, or are an opportunistic passenger of neurodegeneration is difficult to resolve. Here we propose to
expand on our preliminary work mapping biological networks underlying two distinct AD-associated
phenotypes using independent post-mortem data sets collected from human subjects. First, we apply a
computational approach to build region-specific biological networks from `preclinical AD' samples measured
from individuals that meet neuropathological criteria for AD, but who were cognitively intact at the time of
death. Specifically, we construct regulatory networks from laser capture microdissected neurons collected from
entorhinal cortex (EC) and hippocampal (HIP) tissue and compared the structure of preclinical AD and control
networks. We use network analysis to identify several sub-networks and key drivers perturbed in preclinical
AD. Functional genomic analysis of networks identified many enrichments relevant to viral susceptibility loci
among network drivers, including roles for C2H2 zinc fingers, G4-quadruplex activity, and miR-155 in
regulating diverse pro and anti-viral factors. Preliminary network analysis of a second independent data set
characterizing individuals with `clinical AD' identified more direct evidence for network mechanisms of viral
activity in AD. The availability of next-generation DNA and RNA sequencing allowed us to evaluate the direct
presence of viral sequences, and quantify association with AD. We built preliminary network models of host-
virus regulatory interactions and virus-virus interactions to correlate viral species with the severity of cognitive
impairment and neuropathology. We find evidence that the virus-host landscape is shaped by both competitive
and synergistic interactions between multiple viral species, with collective impacts on amyloid precursor protein
(APP) processing, cytoskeletal organization, protein synthesis and innate immune response. We identified host
DNA variants that associate with viral abundance (vQTL), and found that vQTLs associate with increased AD
risk, clinical dementia severity, and neuropathology severity, indicating a shared genetic basis linking risk for
AD, severity of AD neuropathology, and abundance of specific viral species. We propose to perform
computational and experimental work to further elucidate the specific network mechanisms causal drivers or
viral pathogens in AD pathophysiology. Specifically, we aim i) to map and models the roles of specific viral
species in modulating pathogenic molecular, genetic, and clinical networks in preclinical and clinical AD, ii) to
evaluate the roles of C2H2 zinc finger proteins and G-quadruplex sequences in mediating molecular pathology
of preclinical and clinical AD, and iii) to identify and evaluate specific molecules that mediate viral effects upon
the molecular pathology of preclinical and clinical AD.
长期以来,研究人员一直怀疑致病微生物可能导致
阿尔茨海默病(AD),但微生物相关抗原是否代表因果成分的问题
或者是神经退行性变的机会性乘客是难以解决的。在此,我们建议
扩展我们的初步工作映射生物网络的基础上两个不同的AD相关
使用从人类受试者收集的独立死后数据集进行表型分析。首先,我们应用一个
从测量的“临床前AD”样本建立区域特异性生物网络的计算方法
来自符合AD的神经病理学标准,但在治疗时认知完整的个体。
死亡具体来说,我们通过激光捕获从以下组织收集的显微切割神经元来构建调节网络:
内嗅皮层(EC)和海马(HIP)组织,并比较临床前AD和对照组的结构
网络.我们使用网络分析来识别临床前干扰的几个子网络和关键驱动因素。
AD.网络的功能基因组学分析鉴定了许多与病毒易感性位点相关的富集
在网络驱动因素中,包括C2 H2锌指,G4-四链体活性和miR-155在
调节多种促病毒因子和抗病毒因子。第二个独立数据集的初步网络分析
表征具有“临床AD”的个体确定了病毒网络机制的更直接证据。
活动AD。下一代DNA和RNA测序的可用性使我们能够评估直接
病毒序列的存在,并量化与AD的关联。我们建立了主机的初步网络模型-
病毒调节相互作用和病毒-病毒相互作用,以将病毒种类与认知障碍的严重程度相关联,
损伤和神经病理学。我们发现的证据表明,病毒宿主景观是由两个竞争
以及多种病毒之间的协同作用,对淀粉样前体蛋白产生集体影响
(APP)加工、细胞骨架组织、蛋白质合成和先天免疫应答。我们确认了
与病毒丰度相关的DNA变异(vQTL),并发现vQTL与AD增加相关
风险,临床痴呆严重程度和神经病理学严重程度,表明共同的遗传基础,
AD、AD神经病理学的严重程度和特定病毒种类的丰度。我们建议执行
计算和实验工作,以进一步阐明具体的网络机制因果驱动程序或
AD病理生理学中的病毒病原体。具体来说,我们的目标是i)绘制和模拟特定病毒的作用,
在临床前和临床AD中调节致病性分子、遗传和临床网络,ii)
评估C2 H2锌指蛋白和G-四链体序列在介导分子病理学中的作用
和iii)鉴定和评估介导病毒对AD的作用的特异性分子,
临床前和临床AD的分子病理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Thomas Dudley其他文献
Joel Thomas Dudley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Thomas Dudley', 18)}}的其他基金
Pre-clinical Testing of a Novel Therapeutic for Nonalcoholic Steatohepatitis
非酒精性脂肪性肝炎新疗法的临床前测试
- 批准号:
9386379 - 财政年份:2017
- 资助金额:
$ 84.41万 - 项目类别:
Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome
西奈山阐明可药物基因组的知识管理中心
- 批准号:
9558160 - 财政年份:2014
- 资助金额:
$ 84.41万 - 项目类别:
Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome
西奈山阐明可药物基因组的知识管理中心
- 批准号:
8785466 - 财政年份:2014
- 资助金额:
$ 84.41万 - 项目类别:
Network Based Predictive Drug Discovery for Alzheimer's Disease
基于网络的阿尔茨海默病预测药物发现
- 批准号:
8849718 - 财政年份:2014
- 资助金额:
$ 84.41万 - 项目类别:
Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome
西奈山阐明可药物基因组的知识管理中心
- 批准号:
9325632 - 财政年份:2014
- 资助金额:
$ 84.41万 - 项目类别:
Methods for Evolutionary Informed Network Analysis to Discover Disease Variation
用于发现疾病变异的进化知情网络分析方法
- 批准号:
8826738 - 财政年份:2013
- 资助金额:
$ 84.41万 - 项目类别:
Methods for Evolutionary Informed Network Analysis to Discover Disease Variation
用于发现疾病变异的进化知情网络分析方法
- 批准号:
8482670 - 财政年份:2013
- 资助金额:
$ 84.41万 - 项目类别: