Molecular mechanism of acidotoxicity to neurons
神经元酸毒性的分子机制
基本信息
- 批准号:9367941
- 负责人:
- 金额:$ 33.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:ASIC channelAcidosisAcidsAdverse effectsAlzheimer&aposs DiseaseAmyotrophic Lateral SclerosisBindingBrain InjuriesBrain IschemiaC-terminalCationsCell DeathCell surfaceCellsCessation of lifeComplexCouplingDependenceEncephalopathiesEvaluationGlycine decarboxylaseGoalsHourHuntington DiseaseIn VitroInvestigationIon ChannelIonsIschemiaIschemic StrokeKnock-outKnockout MiceLigandsLinkMediatingMediator of activation proteinMiddle Cerebral Artery OcclusionModelingMolecularMolecular ChaperonesMolecular ConformationMultiple SclerosisMusN-Methyl-D-Aspartate ReceptorsNecrosisNerveNerve DegenerationNeurologic DeficitNeuronsParkinson DiseasePathologic ProcessesPathway interactionsPatientsPeptidesPharmaceutical PreparationsPharmacologyPhosphorylationPhosphotransferasesPhysiologicalPhysiological ProcessesPlayProteinsProteomicsProtonsRIPK3 geneReceptor ActivationReceptor InhibitionReceptor Serine/Threonine KinaseRecruitment ActivityReperfusion TherapyRodentRodent ModelRoleSerine/Threonine PhosphorylationSpinocerebellar AtaxiasStrokeTestingTherapeuticTimeTissuesTraumatic Brain Injurybasecell killingclinically relevantclinically significantcytotoxicityeffective therapyextracellularin vivoin vivo Modelinterestmouse modelnervous system disorderneuron lossneuroprotectionnovelnovel therapeutic interventionpreventprotective effectprotein p80receptorresponsespinal cord and brain injurytherapeutic targettreatment strategy
项目摘要
PROJECT SUMMARY
Tissue acidosis is a major contributing factor to neuronal cell death associated with neurological diseases,
such as stroke, traumatic brain and spinal cord injuries, multiple sclerosis (MS) and amyotrophic lateral
sclerosis (ALS), as well as Alzheimer's, Huntington, and Parkinson’s diseases. It has been well established
that acid-sensing ion channels subtype 1a (ASIC1a) is critically involved in acidosis-induced neuronal cell
death in both in vitro and in vivo models. The protective effects of ASIC1a knockout and pharmacological
inhibition of ASIC1a function shown in the mouse models of ischemic stroke, MS, HD, and ALS testify the
potential of targeting ASIC1a to mitigate neuronal damages in multiple types of neurological disorders.
However, the mechanism(s) by which ASIC1a activation causes neuronal death remains mysterious despite
extensive investigations. Conventionally, ASIC1a is believed to form cell surface cation channels activated
by extracellular protons to mediate Na+ and Ca2+ entry into the cell. The ion conducting function, especially
Ca2+ influx, is thought to cause Ca2+ overload that eventually leads to acid-induced cytotoxicity. However, our
recent results suggest that the cell killing effect of ASIC1a is dependent not on its channel conductance, but
on the recruitment and phosphorylation of serine/threonine kinase receptor interaction protein 1 (RIP1) to the
C-terminus of ASIC1a protein. RIP1 is a key mediator of death receptor-induced necroptotic pathway. In
rodent model of ischemic stroke, middle cerebral artery occlusion (MCAO), inhibiting RIP1, just like inhibiting
ASIC1a, was shown to be neuroprotective even when the drug was administered several hours after the
onset of brain ischemia. Therefore, acidosis neuronal death most likely occurs through ASIC1a-RIP1
physical coupling and the consequent activation of RIP1-dependent necroptosis. The goal of the proposed
project is to elucidate this novel mechanism of acid-induced, ASIC1a/RIP1-mediated necroptotic cell demise
in neurons. Aim I will define the death pathway mediated by ASIC1a-RIP1 interaction in response to acidosis
through systematic evaluation of key factors involved in ASIC1a-mediated cell demise in cultured neurons
and in the mouse MCAO model. Aim II will examine a novel mechanism by which a chaperone protein
facilitates RIP1 activation through disruption of an intramolecular interaction between the cytoplasmic N- and
C-termini of ASIC1a. Aim III will elucidate how the C-terminal RIP1 interaction domain of ASIC1a triggers
and mediates acidosis-induced necroptosis and test whether disrupting such interaction can mitigate
neuronal damage caused by acidosis and brain ischemia. Successful completion of this project will provide a
better understanding of the molecular mechanism of neuronal acidotoxicity, which will shed lights on new
treatment strategies for several major types of neurological disorders.
项目总结
组织酸中毒是与神经系统疾病相关的神经细胞死亡的主要因素,
如中风、创伤性脑和脊髓损伤、多发性硬化症(MS)和肌萎缩侧索硬化
硬化症(ALS),以及阿尔茨海默氏症、亨廷顿和帕金森氏症。它已经建立得很好了
酸敏感离子通道1a亚型(ASIC1a)在酸中毒诱导的神经细胞中起重要作用
在体外和体内模型中均有死亡。ASIC1a基因敲除的保护作用及其药理作用
在缺血性卒中、MS、HD和ALS小鼠模型中显示的ASIC1a功能抑制证明
靶向ASIC1a以减轻多种类型神经疾病的神经元损伤的可能性。
然而,ASIC1a激活导致神经元死亡的机制(S)仍然神秘,尽管
广泛的调查。传统上,ASIC1a被认为形成激活的细胞表面阳离子通道
通过胞外质子介导Na+和Ca~(2+)进入细胞。离子传导功能,特别是
钙离子内流,被认为会导致钙超载,最终导致酸诱导的细胞毒性。然而,我们的
最近的结果表明,ASIC1a的细胞杀伤作用不依赖于它的通道电导,而是依赖于它的通道电导
丝氨酸/苏氨酸激酶受体相互作用蛋白1(RIP1)对细胞的募集和磷酸化
ASIC1a蛋白的C末端。RIP1是死亡受体诱导的坏死链通路的关键介质。在……里面
大鼠缺血性卒中模型,大脑中动脉闭塞,抑制RIP1,就像抑制一样
ASIC1a,被证明是神经保护的,即使在几个小时后给药
脑缺血发作。因此,酸中毒神经元死亡很可能是通过ASIC1a-RIP1发生的。
物理耦合和随后的RIP1依赖的坏死性下垂的激活。建议的目标是
项目旨在阐明酸诱导、ASIC1a/RIP1介导的坏死性细胞死亡的这一新机制。
在神经元中。目的确定酸中毒时ASIC1a-RIP1相互作用所介导的死亡途径。
通过系统评价ASIC1a介导的培养神经元细胞死亡的关键因素
在小鼠大脑中动脉阻塞模型中。AIM II将研究一种新的机制,通过这种机制,伴侣蛋白
通过破坏细胞质N-和RIP1之间的分子内相互作用来促进RIP1的激活
ASIC1a的C-末端。AIM III将阐明ASIC1a的C末端RIP1相互作用结构域是如何触发的
并调节酸中毒引起的坏死性下垂,并测试破坏这种相互作用是否可以缓解
酸中毒和脑缺血引起的神经元损伤。该项目的成功完成将提供
更好地理解神经元酸中毒的分子机制,将为新的
针对几种主要类型的神经疾病的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL X ZHU其他文献
MICHAEL X ZHU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL X ZHU', 18)}}的其他基金
Regulatory mechanisms of lysosomal degradation in neurodegenerative disease
神经退行性疾病中溶酶体降解的调节机制
- 批准号:
10354193 - 财政年份:2021
- 资助金额:
$ 33.45万 - 项目类别:
Molecular Mechanism of Brain Regulation of Chronic Pain
大脑调节慢性疼痛的分子机制
- 批准号:
10349433 - 财政年份:2020
- 资助金额:
$ 33.45万 - 项目类别:
Molecular Mechanism of Brain Regulation of Chronic Pain
大脑调节慢性疼痛的分子机制
- 批准号:
10580604 - 财政年份:2020
- 资助金额:
$ 33.45万 - 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
- 批准号:
8319479 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
- 批准号:
8537939 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
- 批准号:
8144875 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
- 批准号:
7863955 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
Molecular mechanism of regulation of mI(CAT) in intestinal smooth muscle cells
肠平滑肌细胞mI(CAT)调控的分子机制
- 批准号:
8278680 - 财政年份:2009
- 资助金额:
$ 33.45万 - 项目类别:
Molecular mechanism of regulation of mI(CAT) in intestinal smooth muscle cells
肠平滑肌细胞mI(CAT)调控的分子机制
- 批准号:
7762745 - 财政年份:2009
- 资助金额:
$ 33.45万 - 项目类别:
Molecular mechanism of regulation of mI(CAT) in intestinal smooth muscle cells
肠平滑肌细胞mI(CAT)调控的分子机制
- 批准号:
8207618 - 财政年份:2009
- 资助金额:
$ 33.45万 - 项目类别:
相似国自然基金
肿瘤微环境因子Lactic acidosis在肿瘤细胞耐受葡萄糖剥夺中的作用机制研究
- 批准号:81301707
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identification of factor to induce lactic acidosis in pre-metastatic niche
转移前微环境中诱导乳酸性酸中毒的因素的鉴定
- 批准号:
23K06620 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Carbonic Anhydrase IX Acts as a Novel CO2/HCO3- Sensor and Protects the Pulmonary Endothelial Barrier from Acidosis
碳酸酐酶 IX 作为新型 CO2/HCO3- 传感器并保护肺内皮屏障免受酸中毒的影响
- 批准号:
10678442 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Investigation based on both basic and clinical study about acidosis caused by piganide, SGLT2 inhibitor and surgical stress
皮甘尼、SGLT2抑制剂和手术应激引起的酸中毒的基础和临床研究
- 批准号:
23K08372 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of proton-sensing G-protein-coupled receptors in the regulation of microglia and microvessel endothelial cell function in brain acidosis in a mouse ischemia reperfusion model.
质子感应 G 蛋白偶联受体在小鼠缺血再灌注模型脑酸中毒中调节小胶质细胞和微血管内皮细胞功能的作用。
- 批准号:
22K07342 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Magnetic Resonance Fingerprinting of Tumor Vascular Perfusion and Acidosis
肿瘤血管灌注和酸中毒的磁共振指纹图谱
- 批准号:
10593285 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10341493 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10558528 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
Characterization of an abundant lactate-utilizing Campylobacter involved in mitigating rumen acidosis
参与减轻瘤胃酸中毒的丰富乳酸利用弯曲杆菌的表征
- 批准号:
557929-2021 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10278747 - 财政年份:2021
- 资助金额:
$ 33.45万 - 项目类别:
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10671682 - 财政年份:2021
- 资助金额:
$ 33.45万 - 项目类别:














{{item.name}}会员




