The Initiation of DNA Replication in Eukaryotes
真核生物中 DNA 复制的起始
基本信息
- 批准号:9381198
- 负责人:
- 金额:$ 29.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseBindingBinding ProteinsBiochemicalBiological AssayCell CycleDNADNA BindingDNA biosynthesisDNA replication forkDataDefectDevelopmentDiagnosisDissociationEukaryotaEventExclusionFutureG1 PhaseGenomic DNAHandIn VitroMalignant NeoplasmsMediatingMitosisMotorPeptide Initiation FactorsPhosphorylationPhosphorylation SitePhosphotransferasesPolymeraseProcessProteinsReplication InitiationReplication OriginS PhaseSaccharomycetalesSingle-Stranded DNASite-Directed MutagenesisTestingTumor Markerscancer biomarkerscancer diagnosiscancer therapycell growthchemotherapeutic agentchemotherapyds-DNAexperimental studyhelicasein vivomeltingmutantoutcome forecastpreventreconstitutionyeast protein
项目摘要
Abstract
The replication fork helicase unwinds genomic DNA at a replication fork. The assembly and activation
of the eukaryotic replication fork helicase is highly regulated. Cdc45, Mcm2-7, and GINS (CMG) form a large
assembly that is the active helicase, and the Mcm2-7 is the heterohexameric ATPase that forms the motor of
the CMG. The assembly and activation of the CMG is governed by two essential S-phase kinases (S-CDK and
DDK), and four essential initiation factors (Sld2, Sld3, Dpb11, and Mcm10) in budding yeast. S-CDK and DDK
are currently investigated as targets for the development of cancer chemotherapeutic agents, and Mcm2-7
proteins serve as tumor markers. The Mcm2-7 loads as a double hexamer in late M and G1 phases, and in S
phase the Mcm2-7 rings dissociates to single hexamers (Figure 1). Critical unanswered question in the
initiation of DNA replication are: (1) How is the Mcm2-7 ring opened during S phase to allow for the extrusion
of ssDNA (i.e. origin melting)? (2) How is origin DNA melted? and (3) How is melted origin DNA transferred to
RPA, the eukaryotic single-stranded binding protein? Our central hypotheses are that DDK and S-CDK activity
function with the essential initiation factors, Sld2, Sld3, Dpb11 and Mcm10, to open the Mcm2-7 ring, melt
origin DNA, stabilize melted origin single-stranded DNA, and transfer melted origin DNA to RPA.
We have also reconstituted a DNA replication initiation assay using purified budding yeast proteins, and
we have generated or acquired conditional degron strains for each of the replication proteins. Thus, we will
use a combination of in vitro reconstitution assays and in vivo experiments to test our hypotheses. We will first
determine the Mcm2-7 subunit interface required for origin melting during S phase. We will also determine
whether Mcm2-7 ring opening is required for subsequent CMG assembly or Mcm2-7 double-hexamer
dissociation, or whether CMG assembly and double-hexamer dissociation occur prior to Mcm2-7 ring opening.
Thus, we will establish the sequence of key events required for DNA replication initiation.
We will also test the hypothesis that S-CDK and DDK phosphorylate Mcm2-7 proteins to promote origin
melting during S phase. Sld2, Sld3, Dpb11, or Mcm10 each has biochemical activity for binding origin ssDNA.
We will determine how Sld2, Sld3, Dpb11, and Mcm10 function with one another to stabilize single-stranded
DNA as it is produced during the process of origin melting. Our hypothesis is that Mcm10 or Sld2-Sld3-Dpb11
function in a S-CDK-dependent manner coordination to stabilize melted origin DNA, preventing reannealing to
double-stranded DNA. Finally, we will determine how the melted origin DNA is ultimately transferred to RPA.
We have preliminary data suggesting that Dpb11 interaction with RPA is required for DNA replication, and we
propose that Dpb11 hands-off melted single-stranded DNA to RPA at a replication origin. Taken together,
these three aims will provide a comprehensive view of how cell cycle kinases function with replication initiator
proteins to mediate replication fork helicase activation and DNA replication initiation in eukaryotes.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanchang Wang其他文献
Yanchang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanchang Wang', 18)}}的其他基金
Temporal-spatial control of mitotic regulators by polySUMOylation
通过多SUMO化对有丝分裂调节因子进行时空控制
- 批准号:
10718546 - 财政年份:2023
- 资助金额:
$ 29.67万 - 项目类别:
The Initiation of DNA Replication in Eukaryotes
真核生物中 DNA 复制的起始
- 批准号:
9982350 - 财政年份:2017
- 资助金额:
$ 29.67万 - 项目类别:
The Initiation of DNA Replication in Eukaryotes
真核生物中 DNA 复制的起始
- 批准号:
9749991 - 财政年份:2017
- 资助金额:
$ 29.67万 - 项目类别:
Investigate the molecular mechanism that ensures chromosome bipolar attachment
研究确保染色体双极附着的分子机制
- 批准号:
9135454 - 财政年份:2013
- 资助金额:
$ 29.67万 - 项目类别:
Investigate the Molecular Basis that Controls the Timing of Spindle Elongation
研究控制纺锤体伸长时间的分子基础
- 批准号:
8083720 - 财政年份:2011
- 资助金额:
$ 29.67万 - 项目类别:














{{item.name}}会员




