Microfluidic platform for stress-induced rapid antibiotic susceptibility testing
用于应激诱导快速抗生素敏感性测试的微流控平台
基本信息
- 批准号:9264397
- 负责人:
- 金额:$ 39.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-17 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAminoglycosidesAnabolismAntibiotic ResistanceAntibiotic TherapyAntibiotic susceptibilityAntibioticsBacteriaBacterial InfectionsBiochemical PathwayBiological AssayBiological ModelsCell DeathCell WallCellsCiprofloxacinClindamycinClinicalClinical MicrobiologyCombined AntibioticsCommunicable DiseasesComplementConsultDNADaptomycinDataDiagnostic ProcedureDiseaseDrug resistanceEffectivenessEnzymesErythromycinEvaluationFundingGenerationsGenetic TranscriptionGenetic screening methodGoalsGovernmentGram-Negative BacteriaGram-Positive BacteriaGrowthHigh PrevalenceIonic StrengthsLaboratoriesLeadLiteratureMechanical StressMechanicsMethicillinMethicillin ResistanceMethodologyMethodsMicrobeMicrofluidicsMinimum Inhibitory Concentration measurementMonitorMulti-Drug ResistanceOrganismOxidative StressPathway interactionsPatient NoncompliancePatientsPatternPerformancePersonsPharmacotherapyPhenotypePhysiciansPredispositionPrevalenceProcessProliferatingProtein BiosynthesisPublic HealthPublishingReagentRegimenReporterResearchResistanceSamplingScientistSpecificitySpecimenStaphylococcus aureusStressSulfonamidesSystemTechniquesTechnologyTestingTetracyclinesTimeVancomycinWorkbacterial metabolismbactericidebasebeta-Lactamsbiological adaptation to stressclinical diagnosticsclinical practicecombatcostdrug candidateepidemiology studyexperimental studyfield studyimprovedinnovationkillingsmolecular diagnosticsnew technologynovelnovel diagnosticspathogenpublic health relevancerapid detectionrapid techniquerepairedresistance mechanismresistant strainresponsescreeningshear stressskillsstressorsuccesstooltreatment choicetrend
项目摘要
DESCRIPTION (provided by applicant): Current standard methods for detecting antibiotic susceptibility are based on the ability of the bacteria to proliferate in the presence of antibiotis, and thus these techniques are time-consuming, costly, and insensitive, particularly for evaluation of slow-growing organisms. To develop a truly rapid susceptibility test, one must circumvent the need for growth. We are developing a microfluidic test that interrogates the response of cells to antibiotics in the presence of mechanical and/or soluble stressors and thereby minimizes the time to results. The core of the hypothesis is that by straining the cell, we
induce the cellular repair processes and associated biochemical pathways. These pathways are often targets of antibiotics (e.g., cell wall biosynthesis, protein synthesis, DNA transcription). f the antibiotic hinders those repair processes, the cell will die under the continued application of
stress. We posit that monitoring cell death under stress in the presence of antibiotics can provide phenotypic information in an ultra-rapid time frame allowing physicians to make appropriate antibiotic treatment choices sooner. We envisage that this methodology would complement the existing rapid tests based on molecular diagnostics (e.g., PCR) because it would provide a low-cost rapid method that delivers phenotypic information. While genetic tests provide precise information for epidemiological studies, the high reagent costs, relatively high operator skills required, and limited clinical utility continue to limit widespread routine use. Furthermore, the molecular diagnostics suffer from a high number of false positives and unacceptable performance in non-sterile specimens (e.g., polymicrobial samples). As our method could be automated and is based on phenotypic changes, we believe it is superior as a routine clinical diagnostic providing physicians with the information they need to treat their patients, namely what antibiotic to use to kill the infecting pathogen. The method can be multiplexed (multiple antibiotics and multiple organisms) and can be integrated with current bacterial identification methodologies, thus it has the potential to be the basis of a new diagnostics system that rapidly provides clinicians with both identification and antibiotic susceptibility profiles in a timeframe that is much shorter than is currently possible. The method also opens new avenues of research into how stress can potentiate the effects of antibiotics. Once developed, the technique could also be used as a rapid screening technology for new antibiotic drug candidates.
描述(由申请人提供):目前检测抗生素敏感性的标准方法是基于细菌在抗生素存在下增殖的能力,因此这些技术耗时,昂贵且不敏感,特别是对于缓慢生长的生物体的评估。要开发一种真正快速的敏感性测试,就必须避开对生长的需求。我们正在开发一种微流体测试,可以在机械和/或可溶性压力源存在的情况下询问细胞对抗生素的反应,从而最大限度地缩短获得结果的时间。这个假说的核心是,通过使细胞紧张,我们
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microfluidic advances in phenotypic antibiotic susceptibility testing.
- DOI:10.1007/s10544-016-0121-8
- 发表时间:2016-12
- 期刊:
- 影响因子:2.8
- 作者:Campbell J;McBeth C;Kalashnikov M;Boardman AK;Sharon A;Sauer-Budge AF
- 通讯作者:Sauer-Budge AF
Optimization of Stress-Based Microfluidic Testing for Methicillin Resistance in Staphylococcusaureus Strains.
- DOI:10.3390/diagnostics8020024
- 发表时间:2018-04-17
- 期刊:
- 影响因子:0
- 作者:Kalashnikov M;Lee JC;Sauer-Budge AF
- 通讯作者:Sauer-Budge AF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Kalashnikov其他文献
Maxim Kalashnikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Kalashnikov', 18)}}的其他基金
EXPERIMENTS WITH ANGULAR LIGHT SCATTERING SPECTROSCOPY
角光散射光谱实验
- 批准号:
8170376 - 财政年份:2010
- 资助金额:
$ 39.62万 - 项目类别:
SUB-CELLULAR SCATTERING OF THE INDIVIDUAL ORGANELLES
单个细胞器的亚细胞散射
- 批准号:
8170408 - 财政年份:2010
- 资助金额:
$ 39.62万 - 项目类别:
EXPERIMENTS WITH ANGULAR LIGHT SCATTERING SPECTROSCOPY
角光散射光谱实验
- 批准号:
7955837 - 财政年份:2009
- 资助金额:
$ 39.62万 - 项目类别:
INSTRUMENTATION FOR ANGULAR LIGHT SCATTERING SPECTROSCOPY
角光散射光谱仪
- 批准号:
7955838 - 财政年份:2009
- 资助金额:
$ 39.62万 - 项目类别:
INSTRUMENTATION FOR ANGULAR LIGHT SCATTERING SPECTROSCOPY
角光散射光谱仪
- 批准号:
7722782 - 财政年份:2008
- 资助金额:
$ 39.62万 - 项目类别:
EXPERIMENTS WITH ANGULAR LIGHT SCATTERING SPECTROSCOPY
角光散射光谱实验
- 批准号:
7722781 - 财政年份:2008
- 资助金额:
$ 39.62万 - 项目类别:
相似海外基金
Aminoglycosides with reduced ototoxicity via miRNA targeting
通过 miRNA 靶向降低耳毒性的氨基糖苷类药物
- 批准号:
9891947 - 财政年份:2019
- 资助金额:
$ 39.62万 - 项目类别:
Aminoglycosides with reduced ototoxicity via miRNA targeting
通过 miRNA 靶向降低耳毒性的氨基糖苷类药物
- 批准号:
9982540 - 财政年份:2019
- 资助金额:
$ 39.62万 - 项目类别:
Antibacterial properties of amphiphilic aminoglycosides
两亲性氨基糖苷类药物的抗菌特性
- 批准号:
524825-2018 - 财政年份:2018
- 资助金额:
$ 39.62万 - 项目类别:
University Undergraduate Student Research Awards
Nanobiocapteurs de résonance des plasmons de surface pour les aminoglycosides
氨基糖苷类表面等离激元共振的纳米生物捕获剂
- 批准号:
495915-2016 - 财政年份:2016
- 资助金额:
$ 39.62万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Designing new aminoglycosides to alleviate inner ear toxicity
设计新的氨基糖苷类药物以减轻内耳毒性
- 批准号:
8943277 - 财政年份:2015
- 资助金额:
$ 39.62万 - 项目类别: