Role of oxidative DNA damage in the onset and progression of metabolic syndrome
DNA 氧化损伤在代谢综合征发生和进展中的作用
基本信息
- 批准号:9326286
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:8-Oxoguanine DNA Glycosylase8-hydroxyguanosineAcuteAddressAdipose tissueAdultAffectAgeAnimal ModelAnimalsBase Excision RepairsBody WeightCell Culture TechniquesCell SurvivalCell modelCellsConsumptionDNADNA DamageDNA RepairDNA Repair DisorderDNA Repair EnzymesDNA glycosylaseDNA lesionDataDefectDevelopmentDiabetes MellitusDietDietary FactorsDietary FatsDietary Fatty AcidDiseaseExcision RepairFastingFatty LiverFatty acid glycerol estersFunctional disorderGastrocnemius MuscleGenesGeneticGenomic DNAGoalsHepaticHepatocyteHigh Fat DietHomeostasisHumanImpairmentIndividualInsulin ResistanceInvestigationKnowledgeLeadLeftLesionLinkLipidsLiverLiver diseasesMacronutrients NutritionMeasuresMediatingMetabolicMetabolic DiseasesMetabolic syndromeMethodsMitochondriaMitochondrial DNAModelingMolecularMorphologyMusMuscleMutationMyoblastsMyocardial tissueNuclearOGG1 geneObesityObesity associated diseaseOutcomeOxidative StressPathologyPathway interactionsPharmacologyPhysiologicalPrevalencePreventionPrevention strategyPreventiveProcessPublic HealthReportingRespirationRoleSkeletal MuscleTestingTherapeuticTissuesTransgenic MiceTransgenic ModelUnited StatesUnsaturated FatsUp-Regulationcombatfatty acid oxidationfeedinggenome integrityglucose uptakeimpaired glucose toleranceinsulin sensitivityinsulin signalinginterestmouse modelnew therapeutic targetnovelnovel therapeuticsobesity in childrenoverexpressionoxidationoxidative DNA damageoxidative damagepopulation healthrepairedresponsesaturated fattumorigenesis
项目摘要
Obesity and related complications such as fatty liver disease and diabetes pose a growing threat to population
health in the United States and around the world. A greater understanding of the dietary factors and cellular
mechanisms that lead to the development of obesity is essential to devising preventive and therapeutic
strategies to combat these metabolic diseases. Oxidative stress, such as that induced by consumption of highfat
diets, is thought to be a causal factor in the development of obesity. Oxidative stress induces damage to
cellular components, including DNA, which, if left unrepaired, can lead to mutations and tumorigenesis.
Oxidative DNA lesions are repaired by the base-excision repair pathway, which is initiated by DNA
glycosylases such as 8-oxoguanine DNA glycosylase (OGG1). OGG1 recognizes and excises the most
commonly formed oxidative DNA lesion, 8-oxo-G. Interestingly, mice deficient in OGG1 have been recently
reported to be susceptible to obesity and fatty liver, indicating an unexpected but critical role for this DNA
repair enzyme in the development of metabolic disease. The overall goal of this project is to delineate the
mechanisms that link oxidative DNA damage to obesity and metabolic syndrome and to identify dietary factors
contributing to the development or prevention of DNA damage. Preliminary data have indicated that OGG1
deficient mice have increased hepatic lipid accumulation, along with markers of decreased fat oxidation in the
liver. These mice also display impaired glucose tolerance and alterations in markers of mitochondrial
morphology in skeletal muscle. The first two aims of this project will therefore address the mechanistic role of
DNA damage in altering hepatic lipid oxidation and skeletal muscle mitochondrial dynamics. These aims will
be completed with the aid of novel cellular and transgenic models of obesity resulting from a defect in DNA
repair deficiency and established methods to measure DNA damage, fat oxidation, mitochondrial morphology
and respiration, and insulin signaling. The completion of these aims will further our understanding of oxidative
stress-induced damage in the initiation and progression of fatty liver disease, as well as impaired insulin
sensitivity, which can ultimately lead to the development of diabetes. With the knowledge gained from these
studies, the third aim will broaden the investigation to delineate the role of dietary fatty acids of varying degrees
of desaturation in the induction of DNA damage in metabolically active tissues, including liver, heart, muscle,
and adipose tissue. Additionally, the third aim will utilize a newly developed transgenic mouse model
overexpressing mitochondrial OGG1 to determine the role of dietary fat exposure and mitochondrial DNA
repair in altering mitochondrial function and cell viability. This critical aim will address significant gaps in our
understanding of the interplay between diet, DNA damage, and metabolic disease. The knowledge gained
from the completion of this final aim will also guide future research focused on developing novel targeted
therapeutics to combat metabolic dysfunction by modulating pathways of DNA damage recognition and repair.
肥胖及相关并发症如脂肪肝和糖尿病对人口构成越来越大的威胁
在美国和世界各地的健康。更深入地了解饮食因素和细胞
导致肥胖发展的机制对于设计预防和治疗方法至关重要。
来对抗这些代谢性疾病。氧化应激,如高脂饮食引起的氧化应激
饮食,被认为是肥胖症发展的一个因果因素。氧化应激诱导损伤
细胞成分,包括DNA,如果不修复,可能导致突变和肿瘤发生。
DNA氧化损伤通过DNA启动的碱基切除修复途径修复
糖基化酶如8-氧代鸟嘌呤DNA糖基化酶(OGG1)。OGG1识别和切除最多
常见的DNA氧化损伤,8-oxo-G。有趣的是,OGG1缺陷的小鼠最近
据报道,这种DNA容易患肥胖和脂肪肝,这表明这种DNA具有意想不到但至关重要的作用
修复酶在代谢性疾病的发展。该项目的总体目标是描绘
将氧化性DNA损伤与肥胖和代谢综合征联系起来的机制,并确定饮食因素
有助于DNA损伤的发展或预防。初步数据显示,OGG1
缺陷小鼠肝脏脂质积累增加,沿着脂肪氧化减少的标志物,
肝脏这些小鼠还表现出葡萄糖耐量受损和线粒体标记物的改变。
骨骼肌的形态学。因此,该项目的前两个目标将解决以下机制的作用:
改变肝脏脂质氧化和骨骼肌线粒体动力学的DNA损伤。这些目标将
在DNA缺陷导致的肥胖症的新细胞和转基因模型的帮助下完成
修复缺陷和建立的方法来测量DNA损伤,脂肪氧化,线粒体形态
呼吸和胰岛素信号。这些目标的完成将进一步加深我们对氧化
在脂肪肝的发生和发展中应激诱导的损伤,以及受损的胰岛素
敏感性,这可能最终导致糖尿病的发展。从这些知识中获得的知识
研究,第三个目标将扩大调查,以描绘不同程度的膳食脂肪酸的作用
去饱和在代谢活性组织中诱导DNA损伤,包括肝脏、心脏、肌肉,
和脂肪组织。此外,第三个目标将利用新开发的转基因小鼠模型
过表达线粒体OGG1,以确定膳食脂肪暴露和线粒体DNA的作用
修复改变线粒体功能和细胞活力。这一关键目标将解决我们在
了解饮食,DNA损伤和代谢疾病之间的相互作用。获得的知识
从这一最终目标的完成也将指导未来的研究重点放在开发新的目标,
通过调节DNA损伤识别和修复途径对抗代谢功能障碍的治疗剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harini Sampath其他文献
Harini Sampath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harini Sampath', 18)}}的其他基金
The role of intestinal SCD1 in regulating metabolic health
肠道SCD1在调节代谢健康中的作用
- 批准号:
10297251 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
The role of intestinal SCD1 in regulating metabolic health
肠道SCD1在调节代谢健康中的作用
- 批准号:
10430276 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
The role of intestinal SCD1 in regulating metabolic health
肠道SCD1在调节代谢健康中的作用
- 批准号:
10627814 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Role of oxidative DNA damage in the onset and progression of metabolic syndrome
DNA 氧化损伤在代谢综合征发生和进展中的作用
- 批准号:
8764741 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:














{{item.name}}会员




